OUTLINE

1. Current trends in metadata
2. Boundaries of metadata in CBS
3. Breaking the boundaries
CURRENT TRENDS IN METADATA
OBVIOUS TRENDS

— Cloud infrastructure: distributed servers
— Big data: continuing growth
— Machine learning & AI: not today
METADATA GETTING FANCY

— Diversity of both metadata and actors
— Data science brings more tools and people than ever
DECENTRALIZATION

— Integration across multiple systems
— Aggregation in data warehouses, data lakes… for analysis
METADATA MANAGEMENT

— Governance by quality and observation
— Active metadata e.g. logging, alerts...
CHALLENGES SUMMARIZED

— More diverse metadata must be integrated
— Different people and tools:
 data scientist, data analyst, data engineers …
— Growing expectations on quality and accessibility for multiple purposes
EXAMPLE

Number of books by publisher X in subject area Y held by each library
BASIC PROBLEMS

— CBS is a specialized tool for managing data in PICA and MARC

— PICA and MARC are arcane, limited data formats: record-field-subfield
LIMITATIONS

— Number of people doing data processing in CBS/PICA/MARC...

— Little accessible standards and tools
CHALLENGES

— Facilitate use of CBS data by others
— Facilitate use of external data with CBS
— Make metadata workflows more transparent
BREAKING THE BOUNDARIES
CONFESSION

— It’s complicated
— Two independent strategies
1. STANDARDIZATION

— Avram Schemas for MARC- and PICA-formats
— PICA Patch format formalizes changes records
— APIs and tools that can be used by anyone
AVRAM SCHEMAS

— List fields and subfields with repeatability
— Allowed values by regex code lists
— Same validation on server, client…
PICA PATCH FORMAT

- Descriptive changes to records
- Record versioning
- Applicable on server, client...

003@ $012345X
- 021A $aA book
+ 021A $aA good book$h for reading
ADVANTAGES

— Based on common web standards (JSON…)
— Accessible by more people with diverse needs
— Not how (take field X, filter by condition Y…) but what (records with specific condition…): imperative vs. descriptive
2. KNOWLEDGE GRAPHS

— Records in CBS
 ■ Hierarchical Record model (record level)
 ■ Links between records via 9 and PPN
 ■ Links via identifiers (DOI, ISSN…)
— External data
 ■ Author affiliation, addresses, names…
KNOWLEDGE GRAPH

— Create CBS Knowledge Graph
— Expose via RDF or Graph Database
— Integrate with external Linked Data
EXAMPLE

Number of books by publisher X in subject area Y held by each library
IMPERATIVE SCRIPT

1. Build index of transitive sub-subjects of Y
2. Get books by publisher X

 pic filter "$033.n="$ (pica-rs)

3. Reduce to books with subject in index
4. Count libraries with holding of the book
SELECT ?library (COUNT(?book) as ?number) WHERE {
} GROUP BY ?library

SPARQL QUERY

Established query language for RDF
CYPHER QUERY

Most common query language for Graph Databases, being standardized as GQL by ISO

MATCH (b:Book)-[:PUBLISHER]->$X,
 (b:Book)-[:ITEM]->()-[:HELDBY]->(library:Library)
WHERE (b:Book)-[:SUBJECT]->$Y OR
 (b:Book)-[:SUBJECT]->(s:Concept)-[:BROADER*]->$Y
RETURN library, count(*)
TAKEAWAYS

— Standardization of data languages to process PICA & MARC
 ▪ Avram Schema format
 ▪ PICA Diff format
— Declarative vs. imperative
— From record-field-subfield to knowledge graphs
REFERENCES

- https://format.gbv.de/schema/avram/specification
- https://format.gbv.de/pica/patch
- https://deutsche-nationalbibliothek.github.io/pica-rs/
- Background images AI created with stable diffusion and midjourney