ADVANCES IN DEA
THEORY AND
APPLICATIONS

With Extensions to Forecasting Models

Edited by

KAORU TONE
National Graduate Institute for Policy Studies, Japan

WILEY
CONTENTS

LIST OF CONTRIBUTORS	xx
ABOUT THE AUTHORS	xxii
PREFACE	xxxii

PART I DEA THEORY

1 Radial DEA Models

Kaoru Tone

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Basic Data</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Input-Oriented CCR Model</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1</td>
<td>The CRS Model</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>The Input-Oriented BCC Model</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1</td>
<td>The VRS Model</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>The Output-Oriented Model</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Assurance Region Method</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>The Assumptions Behind Radial Models</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>A Sample Radial Model</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
2 Non-Radial DEA Models

Kaoru Tone

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2 The SBM Model</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1 Input-Oriented SBM</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Output-Oriented SBM</td>
<td>14</td>
</tr>
<tr>
<td>2.2.3 Non-Oriented SBM</td>
<td>14</td>
</tr>
<tr>
<td>2.3 An Example of an SBM Model</td>
<td>15</td>
</tr>
<tr>
<td>2.4 The Dual Program of the SBM Model</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Extensions of the SBM Model</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1 Variable-Returns-to-Scale (VRS) Model</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2 Weighted-SBM Model</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Concluding Remarks</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
</tbody>
</table>

3 Directional Distance DEA Models

Hirofumi Fukuyama and William L. Weber

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Directional Distance Model</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Variable-Returns-to-Scale DD Models</td>
<td>23</td>
</tr>
<tr>
<td>3.4 Slacks-Based DD Model</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Choice of Directional Vectors</td>
<td>25</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
</tbody>
</table>

4 Super-Efficiency DEA Models

Kaoru Tone

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Radial Super-Efficiency Models</td>
<td>28</td>
</tr>
<tr>
<td>4.2.1 Input-Oriented Radial Super-Efficiency Model</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2 Output-Oriented Radial Super-Efficiency Model</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3 Infeasibility Issues in the VRS Model</td>
<td>29</td>
</tr>
<tr>
<td>4.3 Non-Radial Super-Efficiency Models</td>
<td>29</td>
</tr>
<tr>
<td>4.3.1 Input-Oriented Non-Radial Super-Efficiency Model</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2 Output-Oriented Non-Radial Super-Efficiency Model</td>
<td>30</td>
</tr>
<tr>
<td>4.3.3 Non-Oriented Non-Radial Super-Efficiency Model</td>
<td>30</td>
</tr>
<tr>
<td>4.3.4 Variable-Returns-to-Scale Models</td>
<td>31</td>
</tr>
<tr>
<td>4.4 An Example of a Super-Efficiency Model</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>32</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Determining Returns to Scale in the VRS DEA Model</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Technology Specification and Scale Elasticity</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Technology</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Measure of Scale Elasticity</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Scale Elasticity in DEA Models</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>6</td>
<td>Malmquist Productivity Index Models</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Radial Malmquist Model</td>
</tr>
<tr>
<td>6.3</td>
<td>Non-Radial and Oriented Malmquist Model</td>
</tr>
<tr>
<td>6.4</td>
<td>Non-Radial and Non-Oriented Malmquist Model</td>
</tr>
<tr>
<td>6.5</td>
<td>Cumulative Malmquist Index (CMI)</td>
</tr>
<tr>
<td>6.6</td>
<td>Adjusted Malmquist Index (AMI)</td>
</tr>
<tr>
<td>6.7</td>
<td>Numerical Example</td>
</tr>
<tr>
<td>6.7.1</td>
<td>DMU A</td>
</tr>
<tr>
<td>6.7.2</td>
<td>DMU B</td>
</tr>
<tr>
<td>6.7.3</td>
<td>DMU C</td>
</tr>
<tr>
<td>6.7.4</td>
<td>DMU D</td>
</tr>
<tr>
<td>6.8</td>
<td>Concluding Remarks</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>7</td>
<td>The Network DEA Model</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Notation and Production Possibility Set</td>
</tr>
<tr>
<td>7.3</td>
<td>Description of Network Structure</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Inputs and Outputs</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Links</td>
</tr>
<tr>
<td>7.4</td>
<td>Objective Functions and Efficiencies</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Input-Oriented Case</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Output-Oriented Case</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Non-Oriented Case</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
</tr>
</tbody>
</table>
8 The Dynamic DEA Model
Kaoru Tone and Miki Tsutsui

8.1 Introduction 64
8.2 Notation and Production Possibility Set 65
8.3 Description of Dynamic Structure 67
 8.3.1 Inputs and Outputs 67
 8.3.2 Carry-Overs 67
8.4 Objective Functions and Efficiencies 69
 8.4.1 Input-Oriented Case 69
 8.4.2 Output-Oriented Case 70
 8.4.3 Non-Oriented Case 71
8.5 Dynamic Malmquist Index 71
 8.5.1 Dynamic Catch-up Index 72
 8.5.2 Dynamic Frontier Shift Effect 72
 8.5.3 Dynamic Malmquist Index 72
 8.5.4 Dynamic Cumulative Malmquist Index 72
 8.5.5 Dynamic Adjusted Malmquist Index 73
References 73

9 The Dynamic Network DEA Model
Kaoru Tone and Miki Tsutsui

9.1 Introduction 74
9.2 Notation and Production Possibility Set 75
 9.2.1 Notation 75
9.3 Description of Dynamic Network Structure 77
 9.3.1 Inputs and Outputs 77
 9.3.2 Links 77
 9.3.3 Carry-Overs 78
9.4 Objective Function and Efficiencies 80
 9.4.1 Overall Efficiency 80
 9.4.2 Period and Divisional Efficiencies 81
9.5 Dynamic Divisional Malmquist Index 82
 9.5.1 Dynamic Divisional Catch-up Index 82
 9.5.2 Dynamic Divisional Frontier Shift Effect 82
 9.5.3 Dynamic Divisional Malmquist Index 82
 9.5.4 Dynamic Divisional Cumulative Malmquist Index 83
 9.5.5 Dynamic Divisional Adjusted Malmquist Index 83
 9.5.6 Overall Dynamic Malmquist Index 83
References 84
10 Stochastic DEA: The Regression-Based Approach 85
Andrew L. Johnson
10.1 Introduction 85
10.2 Review of Literature on Stochastic DEA 87
 10.2.1 Random Sampling 88
 10.2.2 Imprecise Measurement of Data 88
 10.2.3 Uncertainty in the Membership of Observations 90
 10.2.4 Random Production Possibility Sets 91
 10.2.5 Random Noise 93
10.3 Conclusions 96
References 96

11 A Comparative Study of AHP and DEA 100
Kaoru Tone
11.1 Introduction 100
11.2 A Glimpse of Data Envelopment Analysis 100
11.3 Benefit/Cost Analysis by Analytic Hierarchy Process 102
 11.3.1 Three-Level Perfect Graph Case 102
 11.3.2 General Cases 103
11.4 Efficiencies in AHP and DEA 104
 11.4.1 Input x and Output y 104
 11.4.2 Weights 104
 11.4.3 Efficiency 104
 11.4.4 Several Propositions 105
11.5 Concluding Remarks 105
References 106

12 A Computational Method for Solving DEA Problems with
Infinitely Many DMUs 107
Abraham Charnes and Kaoru Tone
12.1 Introduction 107
12.2 Problem 108
12.3 Outline of the Method 109
12.4 Details of the Method When Z is One-Dimensional 110
 12.4.1 Initial Discretization and Subdivision Parameter 110
 12.4.2 Solving (D^*_h) 110
 12.4.3 Deletion/Subdivision Rules 111
 12.4.4 Solving the New LP 112
 12.4.5 Convergence Check 112
12.5 General Case 113
 12.5.1 Initial Discretization 113
 12.5.2 Deletion and Subdivision (Bisection) Rules 113
 12.5.3 Solving New LPs and Checking Convergence 115

12.6 Concluding Remarks (by Tone) 115
 Appendix 12.A Proof of Theorem 12.1 115
 Appendix 12.B Proof of Theorem 12.2 116
 Reference 116

PART II DEA APPLICATIONS (PAST–PRESENT SCENARIO) 117

13 Examining the Productive Performance of Life Insurance Corporation of India 119
 Kaoru Tone and Biresh K. Sahoo 119

 13.1 Introduction 119
 13.2 Nonparametric Approach to Measuring Scale Elasticity 121
 13.2.1 Technology and Returns to Scale 122
 13.2.2 Qualitative Information on Returns to Scale 123
 13.2.3 Quantitative Information on Returns to Scale 124
 13.2.4 An Alternative Measure of Scale Elasticity 126
 13.3 The Dataset for LIC Operations 128
 13.4 Results and Discussion 130
 13.4.1 Production-Based Analysis 132
 13.4.2 Cost-Based Analysis 133
 13.4.3 Returns-to-Scale Issue 133
 13.4.4 Sensitivity Analysis 135
 13.5 Concluding Remarks 136
 References 136

14 An Account of DEA-Based Contributions in the Banking Sector 141
 Jamal Ouenniche, Skarleth Carrales, Kaoru Tone
 and Hirofumi Fukuyama 141

 14.1 Introduction 141
 14.2 Performance Evaluation of Banks: A Detailed Account 142
 14.3 Current State of the Art Summarized 154
 14.4 Conclusion 163
 References 169

15 DEA in the Healthcare Sector 172
 Hiroyuki Kawaguchi, Kaoru Tone and Miki Tsutsui 172

 15.1 Introduction 172
 15.2 Method and Data 174
 15.2.1 Previous Literature 174
 15.2.2 Formulas for Efficiency Estimation by DN DEA Model 176
15.2.3 Formulas for Malmquist Index by DN DEA Model 179
15.2.4 Empirical Data 179
15.3 Results 184
15.3.1 Estimated Efficiency Scores 184
15.3.2 Estimated Malmquist Index Scores 184
15.4 Discussion 188
15.4.1 Estimation Results and Policy Implications 188
15.4.2 Further Research Questions 189
Acknowledgements 189
References 190

16 DEA in the Transport Sector 192
Ming-Miin Yu and Li-Hsueh Chen
16.1 Introduction 192
16.2 DNDEA in Transport 194
16.2.1 The Production Technology for the Production Process 196
16.2.2 The Production Technology for the Service Process 197
16.3 Extension 200
16.3.1 The Production Technology for HB Activity 202
16.3.2 The Production Technology for UB Activity 203
16.3.3 The Production Technology for the Service Process 204
16.4 Application 207
16.4.1 Input and Output Variables 207
16.4.2 Empirical Results 209
16.5 Conclusions 212
References 212

17 Dynamic Network Efficiency of Japanese Prefectures 216
Hirofumi Fukuyama, Atsuo Hashimoto, Kaoru Tone and William L. Weber
17.1 Introduction 216
17.2 Multiperiod Dynamic Multiprocess Network 217
17.3 Efficiency/Productivity Measurement 221
17.4 Empirical Application 222
17.4.1 Prefectural Production and Data 222
17.4.2 Efficiency Estimates and Their Determinants 225
17.5 Conclusions 229
References 229

18 A Quantitative Analysis of Market Utilization in Electric Power Companies 231
Miki Tsutsui and Kaoru Tone
18.1 Introduction 231
18.2 The Functions of the Trading Division 232
18.3 Measuring the Effect of Energy Trading 235
18.3.1 Definition of Transaction Volumes and Prices 235
18.3.2 Constraints on Internal Transactions 237
18.3.3 Profit Maximization 238
18.3.4 Exogenous Variables 240
18.4 DEA Calculation 242
18.5 Empirical Results 243
18.5.1 Results of Profit Maximization 243
18.5.2 Results of DEA 246
18.6 Concluding Remarks 248

References 249

19 DEA in Resource Allocation 250
Ming-Miin Yu and Li-Hsueh Chen

19.1 Introduction 250
19.2 Centralized DEA in Resource Allocation 252
19.2.1 Minor Adjustment 253
19.2.2 Moderate Adjustment 256
19.2.3 Major Adjustment 259
19.3 Applications of Centralized DEA in Resource Allocation 261
19.3.1 Human Resource Rightsizing in Airports 261
19.3.2 Resource Allocation in Container Terminal Operations 264
19.4 Extension 265
19.4.1 Phase I 266
19.4.2 Phase II 267
19.5 Conclusions 268

References 268

20 How to Deal with Non-convex Frontiers in Data Envelopment Analysis 271
Kaoru Tone and Miki Tsutsui

20.1 Introduction 271
20.2 Global Formulation 273
20.2.1 Notation and Basic Tools 273
20.2.2 Uniqueness of Slacks 274
20.2.3 Decomposition of CRS Slacks 275
20.2.4 Scale-Independent Dataset 275
20.3 In-cluster Issue: Scale- and Cluster-Adjusted DEA Score 276
20.3.1 Clusters 276
20.3.2 Solving the CRS Model in the Same Cluster 277
20.3.3 Scale- and Cluster-Adjusted Score 278
20.3.4 Summary of the SAS Computation 279
20.3.5 Global Characterization of SAS-Projected DMUs 280
20.4 An Illustrative Example 281
20.5 The Radial-Model Case 284
20.5.1 Decomposition of CCR Slacks 285
20.5.2 Scale-Adjusted Input and Output 285
20.5.3 Solving the CCR Model in the Same Cluster 286
20.5.4 Scale- and Cluster-Adjusted Score 286
20.6 Scale-Dependent Dataset and Scale Elasticity 287
20.6.1 Scale-Dependent Dataset 287
20.6.2 Scale Elasticity 288
20.7 Application to a Dataset Concerning Japanese National Universities 289
20.7.1 Data 289
20.7.2 Adjusted Score (SAS) 291
20.7.3 Scale Elasticity 291
20.8 Conclusions 294
Appendix 20.A Clustering Using Returns to Scale and Scale Efficiency 295
Appendix 20.B Proofs of Propositions 295
References 298

21 Using DEA to Analyze the Efficiency of Welfare Offices and Influencing Factors: The Case of Japan’s Municipal Public Assistance Programs 300
Masayoshi Hayashi

21.1 Introduction 300
21.2 Institutional Background, DEA, and Efficiency Scores 301
21.2.1 DMUs 302
21.2.2 Outputs and Inputs 302
21.2.3 Efficiency Scores 303
21.3 External Effects on Efficiency 304
21.3.1 Adjustments for Environmental/External Factors 304
21.3.2 The Second-Stage Regression Model 305
21.3.3 Econometric Issues 306
21.3.4 Estimation Results 307
21.4 Quantile Regression Analysis 309
21.4.1 Different Responses along the Quantiles of Efficiency 309
21.4.2 Results 310
21.5 Concluding Remarks 312
Acknowledgements 312
References 312

22 DEA as a Kaizen Tool: SBM Variations Revisited 315
Kaoru Tone

22.1 Introduction 315
22.2 The SBM-Min Model 316
22.2.1 Production Possibility Set 317
22.2.2 Non-Oriented SBM 317
22.3 The SBM-Max Model 318
22.4 Observations 321
 22.4.1 Distance and Choice of the Set R_h 321
 22.4.2 The Role of Programs (22.10) and (22.16) 321
 22.4.3 Computational Amount 322
 22.4.4 Consistency with the Super-Efficiency SBM Measure 322
 22.4.5 Addition of Weights to Input and Output Slacks 323
22.5 Numerical Examples 323
 22.5.1 An Illustrative Example 323
 22.5.2 Japanese Municipal Hospitals 326
22.6 Conclusions 330
References 330

PART III DEA FOR FORECASTING AND DECISION-MAKING (PAST–PRESENT–FUTURE SCENARIO) 331

23 Corporate Failure Analysis Using SBM 333
 Joseph C. Paradi, Xiaopeng Yang and Kaoru Tone

 23.1 Introduction 333
 23.2 Literature Review 334
 23.2.1 Beaver’s Univariate Model 335
 23.2.2 Altman’s Multivariate Model 336
 23.2.3 Subsequent Models 337
 23.3 Methodology 340
 23.3.1 Slacks-Based Measure 340
 23.3.2 Model Development 342
 23.4 Application to Bankruptcy Prediction 343
 23.4.1 Data Acquisition 344
 23.4.2 Analysis of Results 345
 23.5 Conclusions 352
References 354

24 Ranking of Bankruptcy Prediction Models under Multiple Criteria 357
 Jamal Ouenniche, Mohammad M. Mousavi, Bing Xu and Kaoru Tone

 24.1 Introduction 357
 24.2 An Overview of Bankruptcy Prediction Models 359
 24.2.1 Discriminant Analysis Models 360
 24.2.2 Probability Models 360
 24.2.3 Survival Analysis Models 363
 24.2.4 Stochastic Models 364
24.3 A Slacks-Based Super-Efficiency Framework for Assessing Bankruptcy Prediction Models 366
24.3.1 What Are the Units To Be Assessed, or DMUs? 366
24.3.2 What Are the Inputs and the Outputs? 368
24.3.3 What Is the Appropriate DEA Formulation To Solve? 368
24.4 Empirical Results from Super-Efficiency DEA 372
24.5 Conclusion 376
References 377

25 DEA in Performance Evaluation of Crude Oil Prediction Models 381
Jamal Ouenniche, Bing Xu and Kaoru Tone

25.1 Introduction 381
25.2 An Overview of Crude Oil Prices and Their Volatilities 385
25.3 Assessment of Prediction Models of Crude Oil Price Volatility 388
25.3.1 Forecasting Models of Crude Oil Volatility – DMUs 389
25.3.2 Performance Criteria and Their Measures: Inputs and Outputs 390
25.3.3 Slacks-Based Super-Efficiency Analysis 390
25.3.4 Empirical Results from Slacks-Based Super-Efficiency DEA 396
25.4 Conclusion 401
References 402

26 Predictive Efficiency Analysis: A Study of US Hospitals 404
Andrew L. Johnson and Chia-Yen Lee

26.1 Introduction 404
26.2 Modeling of Predictive Efficiency 405
26.3 Study of US Hospitals 408
26.4 Forecasting, Benchmarking, and Frontier Shifting 412
26.4.1 Effect of Forecast on Effectiveness 412
26.4.2 Benchmarks 412
26.4.3 Technical Progress 414
26.5 Conclusions 416
References 417

27 Efficiency Prediction Using Fuzzy Piecewise Autoregression 419
Ming-Miin Yu and Bo Hsiao

27.1 Introduction 419
27.2 Efficiency Prediction 420
27.3 Modeling and Formulation 423
27.3.1 Notation 423
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.3.2</td>
<td>Phase I: Efficiency Evaluation</td>
<td>424</td>
</tr>
<tr>
<td>27.3.3</td>
<td>Phase II: CIE</td>
<td>426</td>
</tr>
<tr>
<td>27.3.4</td>
<td>Phase III: Fuzzy Piecewise Regression</td>
<td>426</td>
</tr>
<tr>
<td>27.3.5</td>
<td>Phase IV: Validating and Forecasting</td>
<td>431</td>
</tr>
<tr>
<td>27.4</td>
<td>Illustrating the Application</td>
<td>433</td>
</tr>
<tr>
<td>27.4.1</td>
<td>Efficiency Evaluations</td>
<td>433</td>
</tr>
<tr>
<td>27.4.2</td>
<td>Validation</td>
<td>436</td>
</tr>
<tr>
<td>27.4.3</td>
<td>Forecasting</td>
<td>437</td>
</tr>
<tr>
<td>27.5</td>
<td>Discussion</td>
<td>438</td>
</tr>
<tr>
<td>27.6</td>
<td>Conclusion</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>441</td>
</tr>
</tbody>
</table>

Dong-Joon Lim and Timothy R. Anderson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1</td>
<td>Introduction</td>
<td>443</td>
</tr>
<tr>
<td>28.2</td>
<td>Methodology</td>
<td>445</td>
</tr>
<tr>
<td>28.2.1</td>
<td>Preliminaries</td>
<td>445</td>
</tr>
<tr>
<td>28.2.2</td>
<td>Conceptual Framework</td>
<td>446</td>
</tr>
<tr>
<td>28.2.3</td>
<td>Formulation</td>
<td>447</td>
</tr>
<tr>
<td>28.3</td>
<td>Application: Commercial Airplane Development</td>
<td>449</td>
</tr>
<tr>
<td>28.3.1</td>
<td>Research Framework</td>
<td>449</td>
</tr>
<tr>
<td>28.3.2</td>
<td>Analysis of the Current (2007) State of the Art</td>
<td>449</td>
</tr>
<tr>
<td>28.3.3</td>
<td>Risk Analysis</td>
<td>451</td>
</tr>
<tr>
<td>28.3.4</td>
<td>Proof of Concept</td>
<td>453</td>
</tr>
<tr>
<td>28.4</td>
<td>Conclusion and Matters for Future Work</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>455</td>
</tr>
</tbody>
</table>

29 DEA Score Confidence Intervals with Past-Present and Past-Present-Future-Based Resampling 459

Kaoru Tone and Jamal Ouenniche

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1</td>
<td>Introduction</td>
<td>459</td>
</tr>
<tr>
<td>29.2</td>
<td>Proposed Methodology</td>
<td>461</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Past-Present-Based Framework</td>
<td>461</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Past-Present-Future Time-Based Framework</td>
<td>465</td>
</tr>
<tr>
<td>29.3</td>
<td>An Application to Healthcare</td>
<td>465</td>
</tr>
<tr>
<td>29.3.1</td>
<td>Illustration of the Past-Present Framework</td>
<td>466</td>
</tr>
<tr>
<td>29.3.2</td>
<td>Illustration of the Past-Present-Future Framework</td>
<td>475</td>
</tr>
<tr>
<td>29.4</td>
<td>Conclusion</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>478</td>
</tr>
</tbody>
</table>
30 DEA Models Incorporating Uncertain Future Performance
Tsung-Sheng Chang, Kaoru Tone and Chen-Hui Wu

30.1 Introduction
30.2 Generalized Dynamic Evaluation Structures
30.3 Future Performance Forecasts
30.4 Generalized Dynamic DEA Models
 30.4.1 Production Possibility Sets
 30.4.2 DEA Models Incorporating Uncertain Future Performance
30.5 Empirical Study
 30.5.1 Data Analysis
 30.5.2 Analysis of Empirical Results
30.6 Conclusions
References

31 Site Selection for the Next-Generation Supercomputing Center of Japan
Kaoru Tone

31.1 Introduction
31.2 Hierarchical Structure and Group Decision by AHP
 31.2.1 Hierarchical Structure
 31.2.2 Evaluation of Candidate Sites with Respect to Criteria, and Importance of Criteria
 31.2.3 Evaluation by Average Weights
31.3 DEA Assurance Region Approach
 31.3.1 Use of Variable Weights
 31.3.2 Evaluation of the “Positives” of Each Site
 31.3.3 Evaluation of the “Negatives” of Each Site
31.4 Application to the Site Selection Problem
 31.4.1 Preliminary Selection
 31.4.2 Final Selection
31.5 Decision and Conclusion
References

APPENDIX A: DEA-SOLVER-PRO
INDEX