Igor Kozeletskyi

Game-Theoretic Approaches to Allocation Problems in Cooperative Routing

Contents

1	Int	roduction	1	
2		entials of Cooperative Routing Problems	5	
	2.1	Modeling Frameworks for Cooperative Routing	6	
	2.2	Gain Sharing Approaches for Cooperative Routing	10	
3	A Cooperative Traveling Salesmen Problem			
	3.1	Problem Formulation	14	
	3.2	A Model Reformulation for the Cooperative TSP	18	
	3.3	Extension to a Case of Dynamic Planning	22	
	3.4	A Multi-Objective Representation of the Problem	27	
4	A Shapley Value-Based Cost Allocation			
	4.1	A Game Theoretical Representation of the Cooperative TSP	32	
	4.2	The Shapley Value	36	
	4.3	An Algorithm for a Shapley Value-Based Allocation	38	
	4.4	Numerical Evaluation	44	
5	A (Core-Based Cost Allocation	49	
	5.1	The Core of a Cooperative Game	50	
	5.2	A Row Generation Approach for a Core Allocation	53	
	5.3	Numerical Evaluation	57	
6	A E	Bi-Allocation Game for the Cooperative Traveling Sales-		
		n Problem	5 9	
	6.1	Multi-Objective Cooperative Games in the Literature	60	
	6.2	Preliminaries for NTU Games	61	
	6.3	Formulation of a Ri-Allocation TSP Game	66	

	6.4	On the Supperadditivity of the Bi-Allocation Game	69		
7		Bi-Allocation Core Appproach for the Allocation Prob			
	lem		71		
	7.1	The Bi-Allocation Core	72		
	7.2	An Algorithm for a Bi-Allocation Core-Based Solution	77		
	7.3	An Example for the Computational Algorithm	89		
	7.4	Derivation of an Allocation Rule	92		
	7.5	Numerical Evaluation	94		
8	A Bi-Allocation Shapley Value Approach for the Allocation				
	Pro	olem	97		
	8.1	The Bi-Allocation Shapley Value	98		
	8.2	An Allocation Approach based on the Bi-Allocation Shapley			
		Value	101		
	8.3	Numerical Evaluation	109		
9	Con	clusions	113		
\mathbf{A}_{l}	peno	lices			
Aj	peno	lix A Technical Proofs	117		
	A.1	Existence of Pareto Optimal Solutions for the Multi-Objective			
		Cooperative TSP	117		
	A.2	A Proof of the Existence Theorem	118		
A	pend	lix B Details on Computational Studies	125		
	B.1	Computational Time for Subcoalitions for the Shapley Value	125		
	B.2	An Example with an Empty Core:	127		
Aj	peno	lix C Feasible Solutions for the Example from Section	1		
	8.2		131		
Bi	Bibliography				