Anne Schaefer

Nonparametric frontier-based analysis of efficiency and its drivers in business processes

Comparison of methods with empirical application to an OTC derivatives post-trade clearing process of a major German bank

Verlag Dr. Kovač

Hamburg 2016

Contents

Danksagung					VII		
L	List of Figures X						
L	ist o	f Tabl	es	-	ХX		
L	ist o	f Abbı	reviations	X	ΧV		
L	ist o	f Syml	bols	XX	XIX		
1	Int	roduc	tion		1		
	1.1	Aim	of this dissertation		2		
	1.2	Speci	ification of the contribution of this dissertation		3		
		1.2.1	Perspective I: Focus on a relevant efficiency type and a relevan	t			
			banking efficiency modelling type		4		
		1.2.2	Perspective II: The business process as relevant level for measurement	ent	6		
		1.2.3	Perspective III: Nonparametric frontier-based efficiency analysis as	s			
			relevant method to be used on process level		9		
		1.2.4	Perspective IV: Securities clearing and settlement processes as rel-	-			
			evant dimension for efficiency measurement in banking		11		
	1.3	Struc	ture of this dissertation		12		
2	Rel	ated li	iterature, problem definition, and research questions		15		
	2.1	Origin	ns of disaggregated performance measurement		15		
	2.2	Busin	less process management		17		
		2.2.1	Origins and definitions of BPM		18		
		2.2.2	Performance measurement in BPM		19		
			2.2.2.1 Performance measures of business processes		23		
			2.2.2.2 Specifics of process measurement		26		
			2.2.2.2.1 Process types		27		
			2.2.2.2.2 Infrastructure for measurement		28		
			2.2.2.2.3 Linkage to business level information		30		
		222	Applications of frontier-based efficiency measurement on process les	vel	30		

	2.2.4	Lack of research and positioning of the dissertation	34
2.3	Productivity of services		
	2.3.1	Approaches for measuring productivity of services	40
	2.3.2	Services characteristics and the services delivery process	41
	2.3.3	Types and classification of service processes	43
	2.3.4	Applications of frontier analysis to services	45
	2.3.5	Lack of research and positioning of the dissertation	46
		2.3.5.1 Definition of services process	47
		2.3.5.2 Framework for measuring services productivity	48
2.4	Securities clearing and settlement		
	2.4.1	Basic functions of the post-trade services industry	53
	2.4.2	Participants in the post-trade services market	55
	2.4.3	Risks associated with securities clearing & settlement	56
	2.4.4	Scale economies, scope economies, efficiency and competition in se-	
		curities clearing & settlement	60
	2.4.5	Harmonization of the pan-European C&S landscape	65
	2.4.6	Structure of securities clearing & settlement in Germany	66
	2.4.7	Generic process of securities clearing & settlement	68
	2.4.8	Lack of research and positioning of the dissertation	69
2.5	Clarifi	ication of research gap	70
2.6	Resear	rch questions and research design	73
2.7		rch process	
2.8	Descri	iption of case study	78
	2.8.1	Background information	78
	2.8.2	Description of OTC derivatives clearing and settlement process and	
		positioning of the sample process	79
	2.8.3	Process characteristics and service classification of sample process .	82
	2.8.4	Appropriateness of the case study for the dissertation	84
	2.8.5	Derivation of process description by process mining	86
		2.8.5.1 Data	87
		2.8.5.2 Description of the process mining technique	89
		2.8.5.3 Results of process mining and process description	91
	2.8.6	Description of case study data	97
		2.8.6.1 Level of analysis	97
		2.8.6.2 Process variants	98
		2.8.6.3 Data and data cleansing	99
		2.8.6.4 Descriptive statistics	102
		ogical basis of frontier-based efficiency analysis and their im-	
_		for measuring business process efficiency	107
3.1	Defini	ng efficiency	-107

3

	3.2	Estim	ating emo	eiency with frontier analysis	. 11.
		3.2.1	Basic m	ethodology of nonparametric efficiency estimation	. 113
			3.2.1.1	Nonparametric efficiency analysis with distance function	
				approach	. 114
			3.2.1.2	Input set requirements for nonparametric efficiency analysis	sis 118
			3.2.1.3	Additional requirements and conceptual considerations for	
				applying nonparametric efficiency analysis	. 119
		3.2.2	Basic m	ethodology of parametric frontier-based efficiency estimatio	n 121
	3.3	Applie	cation to	the case study	. 126
		3.3.1	Frontier	-based efficiency analysis on process level following Burger	
			(2009)		. 126
		3.3.2	Input-ou	ıtput-model	. 127
		3.3.3	Problem	as with applying SFA in the context of business process ef-	
			ficiency	analysis	. 128
		3.3.4	Fulfillme	ent of input set requirements in the case study	. 130
	3.4	Requi	rements f	or applying nonparametric efficiency measurement on pro-	
		cess le	evel		. 132
	_	-			
4		-		ontier-based nonparametric methods to measure bus	
		-	ess effici	· ·	135
	4.1			onparametric efficiency measurement methods	
		4.1.1		velopment analysis	
			4.1.1.1	The basic model	
			4.1.1.2	The role of the virtual multipliers (weights) in DEA	
			4.1.1.3	The role of specific values of input and output variables in	
				DEA	
			4.1.1.4	Zeros in inputs and/or outputs	
			4.1.1.5	Normalized models	
			4.1.1.6	Congestion and undesired outputs	
			4.1.1.7	Measure-specific DEA-models	
		4.1.2		used models	
			4.1.2.1	Basic slack-based models	
			4.1.2.2	Super-efficiency slack-based model	
		4.1.3	-	posable hull	
		4.1.4		apped nonparametric efficiency estimators	
	4.2			the case study	
		4.2.1		ion of choice of methods	
		4.2.2	Results	of efficiency analysis with SBM- and SSBM-model	
			4.2.2.1	Results for process variant A	
			4	.2.2.1.1 Descriptive statistics of SBM- and SSBM-model	
			4	.2.2.1.2 The efficient set	. 164

	4.2.2.1.3	Interpretation of reference clusters 166			
	4.2.2.1.4	Endogenous input inefficiency (EII) 171			
4.2.2.1.5		Projected input reduction			
	4.2.2.1.6	Mean weights of input variables 173			
	4.2.2.1.7	Results of super-efficiency SBM-model 174			
	4.2.2.2 Results	for process variant B $\ \ldots \ \ldots \ \ldots \ 175$			
	4.2.2.2.1	Descriptive statistics			
	4.2.2.2.2	The efficient set			
	4.2.2.2.3	Interpretation of reference clusters 178			
	4.2.2.2.4	Endogenous input inefficiency (EII) 183			
	4.2.2.2.5	Projected input reduction			
	4.2.2.2.6	Mean weights of input variables			
	4.2.2.2.7	Results for super-efficiency SBM-model 185			
4.2.3	Results of efficien	ncy analysis with CCR			
	4.2.3.1 Descrip	tive statistics for both process variants 185			
	4.2.3.2 Results	for process variant A $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ 189$			
	4.2.3.2.1	The efficient set			
	4.2.3.2.2	Projected input reduction and mean weights of			
		the input variables			
	4.2.3.3 Results	for process variant B $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ 190$			
	4.2.3.3.1	The efficient set			
	4.2.3.3.2	Projected input reduction and mean input weights 191			
4.2.4	Results of efficien	ncy analysis with FDH			
4.2.5	Results of efficien	ncy analysis with m -out-of- n bootstrap 198			
4.2.6	Robustness tests				
	4.2.6.1 Sensitiv	rity of results towards changes in input variables 202			
	4.2.6.2 Sensitiv	rity of results towards outliers			
	4.2.6.2.1	Conceptual consequences of outlier removal for			
		the case study			
	4.2.6.2.2	Elimination of DMUs with extreme input variables 205			
	4.2.6.2.3	Identification of outliers using SSBM-model \dots 207			
	4.2.6.2.4	Detecting outlier following the methodology of			
		Simar (2003)			
	4.2.6.3 Frontier	stability tests			
	4.2.6.3.1	Deletion of input variables and impact on efficient			
		set			
4.2.6.3.2		Spearman rank correlations after elimination of			
		input variables			
	4.2.6.3.3	Deletion of most efficient DMUs and its impacts . 209			
Compa	Comparison and discussion				

4.3

		4.3.1	Methodologically-based comparison				
		4.3.2	Discussion and overall comparison of case study results 217				
			4.3.2.1 Discussion and comparison of SBM-results				
			4.3.2.2 Discussion and comparison of CCR-results				
			4.3.2.3 Discussion and comparison of FDH-results				
			4.3.2.4 Discussion and comparison of results of <i>m</i> -out-of- <i>n</i> bootstrap 226				
			4.3.2.5 Comparison between process variants				
			4.3.2.6 Comparison of results to previous relevant case studies 227				
		4.3.3	Guidelines and pitfalls for applying nonparametric efficiency anal-				
			ysis on business process level				
5	Cor	nparis	on of methods in combination with nonparametric frontier-				
			ciency analysis for identification of efficiency drivers in business				
	-	cesses	237				
	5.1		inologies				
	5.2		popular methods applied in combination with nonparametric effi-				
			y analysis to assess the impact of explanatory variables on efficiency . 240				
		5.2.1	Benchmarking efficient DMUs				
		5.2.2	Comparison of efficiency between groups				
		5.2.3	One-stage approaches: Inclusion of explanatory variables in effi-				
			ciency estimation				
			5.2.3.1 One-stage approaches with hierarchical order (CAT-model) 242				
			5.2.3.2 One-stage approaches without hierarchical order (SYS-				
			model)				
		5.2.4					
	5.2.5 Two-stage approaches: Assessing the impact of explanatory va						
			ables with regression analysis				
			5.2.5.1 Problems with consistency of the nonparametric efficiency				
			estimator and regression estimators				
			5.2.5.2 Problem of serial correlation				
			5.2.5.3 Problems with adequacy of the DGP defined for nonpara-				
			metric efficiency estimation				
			5.2.5.4 Problems with correlation between independent variables				
	* 0		and input variables				
	5.3		eation to the case study				
		5.3.1	Data				
		5.3.2 Explanatory variables					
		5.3.3	Results of benchmarking the efficient DMUs				
			5.3.3.1 Results for process variant A				
			5.3.3.2 Results for process variant B				
		5.3.4	Results of comparison of efficiency between groups 281				

		5.3.4.1 Results for process variant A	284
		5.3.4.2 Results for process variant B	288
	5.3.5	Results of one-stage approaches	291
		5.3.5.1 Results for process variant A	293
		5.3.5.2 Results for process variant B	299
	5.3.6	Results of combination with cluster analysis	304
		5.3.6.1 Results for process variant A \dots	307
		5.3.6.1.1 Cluster characterization	309
		5.3.6.1.2 Assessment of influence of exog	genous variables 313
		5.3.6.2 Results for process variant B \dots	324
		5.3.6.2.1 Cluster characterization	328
		5.3.6.2.2 Assessment of influences of exc	ogenous variables . 329
	5.3.7	Results of two-stage approaches	337
		5.3.7.1 Inclusion of input variables as independ	ent variables 338
		5.3.7.2 Inclusion of interaction terms with input	t variables 340
		$5.3.7.3 \text{Treatment of outliers} \ \dots \ \dots \ \dots$	341
		5.3.7.4 Results for process variant A $\ \ldots \ \ldots$	342
		5.3.7.4.1 Results for A-models	342
		5.3.7.4.2 Results for B-models	353
		5.3.7.4.3 Results for C-models	
		5.3.7.5 Results for process variant B $\ \ldots \ \ldots$	368
		5.3.7.5.1 Results for A-models	
		5.3.7.5.2 Results for B-models	
		5.3.7.5.3 Results for C-models	
5.4	Comp	arison and discussion	
	5.4.1	Methodologically-based comparison	
		5.4.1.1 Benchmarking the efficient process insta	
		5.4.1.2 Comparison between groups	
		$5.4.1.3 \text{One-stage approaches} \dots \dots .$	
		$5.4.1.4 \text{Cluster analysis} \; . \; . \; . \; . \; . \; . \; . \; . \; .$	
		$5.4.1.5 \text{Two-stage approaches} \dots \dots .$	401
	5.4.2	Case-study-based comparison	404
		5.4.2.1 Amount of documents	
		5.4.2.2 Cancel	
		5.4.2.3 Fail	419
		5.4.2.4 Risk	
		5.4.2.5 Escalation	
		5.4.2.6 Carrier	
		$5.4.2.7 Central\ settlement $	
		5.4.2.8 Matching type	425

			5.4.2.9 Matching date	. 427
			5.4.2.10 Product type	. 428
			5.4.2.11 Broker	. 429
			5.4.2.12 Collateral	. 430
			5.4.2.13 Deal type	. 430
			5.4.2.14 Currency	. 431
			5.4.2.15 Trader	. 432
			5.4.2.16 Trade frequency	. 433
			5.4.2.17 Counterparty location	. 434
			5.4.2.18 Results of CCR- versus SBM-efficiency estimation	. 435
		5.4.3	Guidelines and pitfalls for identifying inefficiency drivers in business	
			processes in combination with nonparametric efficiency analysis $\;\;$.	. 436
6	Co	nclusio	on	441
	6.1	Sumn	nary of main results	. 441
	6.2	Asses	sment of the research	. 446
		6.2.1	Contribution to academic research	. 446
		6.2.2	Contribution to business practice	. 449
	6.3	Limit	ations	. 450
	6.4	Avenu	nes for future research	. 451
7	Apı	pendix	:	453
	7.1		ndix A – Appendix for chapter 2	. 453
	7.2		ndix B – Appendix for chapter 3	
		7.2.1	Case study applied for SFA	
			7.2.1.1 Results SFA Pretest	
			7.2.1.2 Results SFA	. 457
	7.3	Apper	ndix C - Appendix for chapter 4	. 458
		7.3.1	Figures for BIAS-corrected efficiency scores determined by m-out-	
			of- n bootstrap	. 458
		7.3.2	Histograms of efficiency scores after removal of zeros	. 463
		7.3.3	Box plots of input variables after outlier removal	. 464
	7.4	Appen	ndix D – Appendix for chapter 5	. 466
		7.4.1	Correlation matrices for explanatory variables	. 466
		7.4.2	Robustness tests for reduced dataset for explanatory variables	. 472
		7.4.3	Figures KW-tests for comparison of groups	. 480
		7.4.4	Differences between CAT- and SYS-model	
		7.4.5	Figures KW-tests for cluster analysis $\ \ldots \ \ldots \ \ldots \ \ldots$. 493
Re	ferer	ices		497