Contents

List of Figures xxvi
List of Tables xxviii
Preface xxvii
Acknowledgements xxx

Part I Statistical Background and Basic Data Handling 1

1 Fundamental Concepts 3
 Introduction 4
 A simple example 4
 A statistical framework 6
 Properties of the sampling distribution of the mean 7
 Hypothesis testing and the central limit theorem 8
 Central limit theorem 10
 Conclusion 13

2 The Structure of Economic Data and Basic Data Handling 14
 Learning objectives 14
 The structure of economic data 15
 Cross-sectional data 15
 Time series data 15
 Panel data 16
 Basic data handling 17
 Looking at raw data 17
 Graphical analysis 17
 Summary statistics 19

Part II The Classical Linear Regression Model 27

3 Simple Regression 29
 Learning objectives 29
 Introduction to regression: the classical linear regression model (CLRM) 30
 Why do we do regressions? 30
 The classical linear regression model 30

ix
Contents

The Ordinary Least Squares (OLS) method of estimation 32
- Alternative expressions for $\hat{\beta}$ 34

The assumptions of the CLRM 35
- General 35
- The assumptions 36
- Violations of the assumptions 37

Properties of the OLS estimators 38
- Linearity 38
- Unbiasedness 39
- Efficiency and BLUEness 40
- Consistency 42

The overall goodness of fit 43
- Problems associated with R^2 44

Hypothesis testing and confidence intervals 45
- Testing the significance of the OLS coefficients 46
- Confidence intervals 47

How to estimate a simple regression in EViews and Stata 48
- Simple regression in EViews 48
- Simple regression in Stata 48
- Reading the Stata simple regression results output 49
- Reading the EViews simple regression results output 49

Presentation of regression results 50

Economic theory applications 50
- Application 1: the demand function 50
- Application 2: the production function 51
- Application 3: Okun's law 52
- Application 4: the Keynesian consumption function 52

Computer example: the Keynesian consumption function 53
- Solution 53

Questions and exercises 58

4 Multiple Regression 62

Learning objectives 62

Introduction 64

Derivation of multiple regression coefficients 64
- The three-variable model 64
- The k-variables case 65
- Derivation of the coefficients with matrix algebra 66
- The structure of the $X'X$ and $X'Y$ matrices 67
- The assumptions of the multiple regression model 68
- The variance-covariance matrix of the errors 69

Properties of multiple regression model OLS estimators 69
- Linearity 69
- Unbiasedness 70
- Consistency 70
- BLUEness 70

R^2 and adjusted R^2 72

General criteria for model selection 73
Multiple regression estimation in EViews and Stata
 Multiple regression in EViews 74
 Multiple regression in Stata 74
 Reading the EViews multiple regression results output 75
Hypothesis testing 75
 Testing individual coefficients 75
 Testing linear restrictions 75
The F-form of the Likelihood Ratio test 77
Testing the joint significance of the Xs 78
 F-test for overall significance in EViews 78
Adding or deleting explanatory variables 79
 Omitted and redundant variables test in EViews 79
 How to perform the Wald test in EViews 80
The t test (a special case of the Wald procedure) 80
The Lagrange Multiplier (LM) test 81
 The LM test in EViews 82
Computer example: Wald, omitted and redundant variables tests 82
 A Wald test of coefficient restrictions 83
 A redundant variable test 83
 An omitted variable test 84
 Computer example: commands for Stata 84
Financial econometrics application: the Capital Asset Pricing Model
 in action 87
 A few theoretical remarks regarding the CAPM 87
 The empirical application of the CAPM 89
 EViews programming and the CAPM application 90
 Advanced EViews programming and the CAPM application 96
Questions and exercises 97

Part III Violating the Assumptions of the CLRM 101

5 Multicollinearity 103
 Learning objectives 103
 Introduction 104
 Perfect multicollinearity 104
 Consequences of perfect multicollinearity 105
 Imperfect multicollinearity 106
 Consequences of imperfect multicollinearity 107
 Detecting problematic multicollinearity 109
 Simple correlation coefficient 109
 R^2 from auxiliary regressions 109
 Computer examples 110
 Example 1: induced multicollinearity 110
 Example 2: with the use of real economic data 112
Questions and exercises 115
6 Heteroskedasticity 117
Learning objectives 117
Introduction: what is heteroskedasticity? 118
Consequences of heteroskedasticity for OLS estimators 120
A general approach 120
A mathematical approach 121
Detecting heteroskedasticity 124
The informal way 124
The Breusch–Pagan LM test 125
The Glesjer LM test 128
The Harvey–Godfrey LM test 130
The Park LM test 131
Criticism of the LM tests 133
The Goldfeld–Quandt test 133
White’s test 135
Computer example: heteroskedasticity tests 137
The Breusch–Pagan test 138
The Glesjer test 140
The Harvey–Godfrey test 140
The Park test 141
The Goldfeld–Quandt test 142
White’s test 144
Commands for the computer example in Stata 144
Engle’s ARCH test 146
Computer example of the ARCH-LM test 147
Resolving heteroskedasticity 148
Generalized (or weighted) least squares 148
Computer example: resolving heteroskedasticity 150
Questions and exercises 153

7 Autocorrelation 156
Learning objectives 156
Introduction: what is autocorrelation? 157
What causes autocorrelation? 157
First- and higher-order autocorrelation 158
Consequences of autocorrelation for the OLS estimators 159
A general approach 159
A more mathematical approach 160
Detecting autocorrelation 162
The graphical method 162
Example: detecting autocorrelation using the graphical method 162
The Durbin–Watson test 164
Computer example of the DW test 166
The Breusch–Godfrey LM test for serial correlation 167
Computer example of the Breusch–Godfrey test 168
Durbin’s h test in the presence of lagged dependent variables 170
Computer example of Durbin’s h test 171
<table>
<thead>
<tr>
<th>Contents</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolving autocorrelation</td>
<td>172</td>
</tr>
<tr>
<td>When ρ is known</td>
<td>173</td>
</tr>
<tr>
<td>Computer example of the generalized differencing approach</td>
<td>173</td>
</tr>
<tr>
<td>When ρ is unknown</td>
<td>175</td>
</tr>
<tr>
<td>Computer example of the iterative procedure</td>
<td>176</td>
</tr>
<tr>
<td>Resolving autocorrelation in Stata</td>
<td>178</td>
</tr>
<tr>
<td>Questions and exercises</td>
<td>178</td>
</tr>
<tr>
<td>Appendix</td>
<td>178</td>
</tr>
<tr>
<td>8 Misspecification: Wrong Regressors, Measurement Errors and Wrong Functional Forms</td>
<td>180</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>180</td>
</tr>
<tr>
<td>Introduction</td>
<td>181</td>
</tr>
<tr>
<td>Omitting influential or including non-influential explanatory variables</td>
<td>181</td>
</tr>
<tr>
<td>Consequences of omitting influential variables</td>
<td>181</td>
</tr>
<tr>
<td>Including a non-influential variable</td>
<td>182</td>
</tr>
<tr>
<td>Omission and inclusion of relevant and irrelevant variables at the same time</td>
<td>183</td>
</tr>
<tr>
<td>The plug-in solution in the omitted variable bias</td>
<td>183</td>
</tr>
<tr>
<td>Various functional forms</td>
<td>185</td>
</tr>
<tr>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>Linear-log functional form</td>
<td>185</td>
</tr>
<tr>
<td>Reciprocal functional form</td>
<td>186</td>
</tr>
<tr>
<td>Polynomial functional form</td>
<td>186</td>
</tr>
<tr>
<td>Functional form including interaction terms</td>
<td>187</td>
</tr>
<tr>
<td>Log-linear functional form</td>
<td>188</td>
</tr>
<tr>
<td>The double-log functional form</td>
<td>188</td>
</tr>
<tr>
<td>The Box–Cox transformation</td>
<td>189</td>
</tr>
<tr>
<td>Measurement errors</td>
<td>190</td>
</tr>
<tr>
<td>Measurement error in the dependent variable</td>
<td>191</td>
</tr>
<tr>
<td>Measurement error in the explanatory variable</td>
<td>191</td>
</tr>
<tr>
<td>Tests for misspecification</td>
<td>193</td>
</tr>
<tr>
<td>Normality of residuals</td>
<td>193</td>
</tr>
<tr>
<td>The Ramsey RESET test for general misspecification</td>
<td>195</td>
</tr>
<tr>
<td>Tests for non-nested models</td>
<td>197</td>
</tr>
<tr>
<td>Computer example: the Box–Cox transformation in EViews</td>
<td>199</td>
</tr>
<tr>
<td>Approaches in choosing an appropriate model</td>
<td>202</td>
</tr>
<tr>
<td>The traditional view: average economic regression</td>
<td>202</td>
</tr>
<tr>
<td>The Hendry ‘general to specific approach’</td>
<td>203</td>
</tr>
<tr>
<td>Questions and Exercises</td>
<td>204</td>
</tr>
</tbody>
</table>

Part IV Topics in Econometrics | 207 |

9 Dummy Variables | 209 |
| Learning objectives | 209 |
| Introduction: the nature of qualitative information | 210 |
The use of dummy variables
 Intercept dummy variables 210
 Slope dummy variables 212
 The combined effect of intercept and slope dummies 214
Computer example of the use of dummy variables 215
 Using a constant dummy 216
 Using a slope dummy 216
 Using both dummies together 217
Special cases of the use of dummy variables 218
 Using dummy variables with multiple categories 218
 Using more than one dummy variable 220
 Using seasonal dummy variables 221
Computer example of dummy variables with multiple categories 222
Financial econometrics application: the January effect in emerging stock markets 224
Tests for structural stability 227
 The dummy variable approach 227
 The Chow test for structural stability 227
Financial econometrics application: the day-of-the-week effect in action 228
Questions 230

10 Dynamic Econometric Models 231
Learning objectives 231
Introduction 232
Distributed lag models 232
 The Koyck transformation 233
 The Almon transformation 235
 Other models of lag structures 236
Autoregressive models 236
 The partial adjustment model 236
 A computer example of the partial adjustment model 237
 The adaptive expectations model 239
 Tests of autocorrelation in autoregressive models 241
Exercises 241

11 Simultaneous Equation Models 243
Learning objectives 243
Introduction: basic definitions 244
Consequences of ignoring simultaneity 245
The identification problem 245
 Basic definitions 245
 Conditions for identification 246
 Example of the identification procedure 247
 A second example: the macroeconomic model of a closed economy 247
Contents

12 Limited Dependent Variable Regression Models 254
 Learning objectives 254
 Introduction 255
 The linear probability model 255
 Problems with the linear probability model 256
 \(\hat{D}_i \) is not bounded by the (0,1) range 256
 Non-normality and heteroskedasticity of the disturbances 257
 The coefficient of determination as a measure of overall fit 257
 The logit model 258
 A general approach 258
 Interpretation of the estimates in logit models 259
 Goodness of fit 260
 A more mathematical approach 261
 The probit model 263
 A general approach 263
 A more mathematical approach 264
 Multinomial and ordered logit and probit models 265
 Multinomial logit and probit models 266
 Ordered logit and probit models 266
 The Tobit model 267
 Computer example: probit and logit models in EViews and Stata 267
 Logit and probit models in EViews 267
 Logit and probit models in Stata 270

Part V Time Series Econometrics 273

13 ARIMA Models and the Box-Jenkins Methodology 275
 Learning objectives 275
 An introduction to time series econometrics 276
 ARIMA models 276
 Stationarity 277
 Autoregressive time series models 277
 The AR(1) model 277
 The AR(p) model 279
 Properties of the AR models 281
 Moving average models 282
 The MA(1) model 282
 The MA(q) model 282
 Invertibility in MA models 283
 Properties of the MA models 284
 ARMA models 285
Contents

Integrated processes and the ARIMA models
 An integrated series 285
 Example of an ARIMA model 286
Box-Jenkins model selection
 Identification 287
 Estimation 288
 Diagnostic checking 288
 The Box-Jenkins approach step by step 289
Computer example: the Box–Jenkins approach 289
 The Box–Jenkins approach in EViews 289
 The Box–Jenkins approach in Stata 293
Questions and exercises 295

14 Modelling the Variance: ARCH–GARCH Models 297
Learning objectives 297
Introduction 298
The ARCH model
 The ARCH(1) model 300
 The ARCH(q) model 300
 Testing for ARCH effects 301
 Estimation of ARCH models by iteration 301
 Estimating ARCH models in EViews 302
 A more mathematical approach 306
The GARCH model
 The GARCH(\(p, q\)) model 309
 The GARCH(1, 1) model as an infinite ARCH process 309
 Estimating GARCH models in EViews 310
Alternative specifications
 The GARCH in mean or GARCH-M model 312
 Estimating GARCH-M models in EViews 313
 The threshold GARCH (TGARCH) model 316
 Estimating TGARCH models in EViews 316
 The exponential GARCH (EGARCH) model 317
 Estimating EGARCH models in EViews 318
 Adding explanatory variables in the mean equation 319
 Adding explanatory variables in the variance equation 319
 Estimating ARCH/GARCH-type models in Stata 320
 Advanced EViews programming for the estimation of GARCH-type models 322
 Application: a GARCH model of UK GDP and the effect of socio-political instability 326
Questions and exercises 330

15 Vector Autoregressive (VAR) Models and Causality Tests 333
Learning objectives 333
Vector autoregressive (VAR) models
 The VAR model 334
 Pros and cons of the VAR models 335
Causality tests
 The Granger causality test
 The Sims causality test

Financial econometrics application: financial development and economic growth – what is the causal relationship?

Estimating VAR models and causality tests in EViews and Stata
 Estimating VAR models in EViews
 Estimating VAR models in Stata

16 Non-Stationarity and Unit-Root Tests

Learning objectives

Introduction
 Unit roots and spurious regressions
 What is a unit root?
 Spurious regressions
 Explanation of the spurious regression problem
 Testing for unit roots
 Testing for the order of integration
 The simple Dickey-Fuller (DF) test for unit roots
 The augmented Dickey-Fuller (ADF) test for unit roots
 The Phillips-Perron (PP) test
 Unit-root tests in EViews and Stata
 Performing unit-root tests in EViews
 Performing unit-root tests in Stata
 Application: unit-root tests on various macroeconomic variables
 Financial econometrics application: unit-root tests for the financial development and economic growth case

Questions and exercises

17 Cointegration and Error-Correction Models

Learning objectives

Introduction: what is cointegration?
 Cointegration: a general approach
 Cointegration: a more mathematical approach
 Cointegration and the error-correction mechanism (ECM): a general approach
 The problem
 Cointegration (again)
 The error-correction model (ECM)
 Advantages of the ECM
 Cointegration and the error-correction mechanism: a more mathematical approach
 A simple model for only one lagged term of X and Y
 A more general model for large numbers of lagged terms
 Testing for cointegration
 Cointegration in single equations: the Engle-Granger approach
 Drawbacks of the EG approach
 The EG approach in EViews and Stata
 Cointegration in multiple equations and the Johansen approach
 Advantages of the multiple-equation approach
Contents

The Johansen approach (again) 381
The steps of the Johansen approach in practice 382
The Johansen approach in EViews and Stata 387
Financial econometrics application: cointegration tests for the financial development and economic growth case 392
Monetization ratio 393
Turnover ratio 396
Claims and currency ratios 396
A model with more than one financial development proxy variable 398
Questions and exercises 400

18 Identification in Standard and Cointegrated Systems 402
Learning objectives 402
Introduction 403
Identification in the standard case 403
The order condition 405
The rank condition 406
Identification in cointegrated systems 406
A worked example 408
Computer example of identification 410
Conclusion 412

19 Solving Models 413
Learning objectives 413
Introduction 414
Solution procedures 414
Model add factors 416
Simulation and impulse responses 417
Stochastic model analysis 418
Setting up a model in EViews 420
Conclusion 423

20 Time-Varying Coefficient Models: A New Way of Estimating Bias-Free Parameters 424
Learning objectives 424
Introduction 425
TVC estimation 426
Theorem 1 427
Coefficient drivers 428
Assumption 1 (auxiliary information) 428
Assumption 2 428
Choosing coefficient drivers 429
First requirement: selecting the complete driver set 429
Second requirement: splitting the driver set 430
Financial econometrics application: rating agencies’ decisions and the sovereign bond spread between Greece and Germany 433
Conclusion 438
Part VI Panel Data Econometrics 439

21 Traditional Panel Data Models 441
 Learning objectives 441
 Introduction: the advantages of panel data 442
 The linear panel data model 443
 Different methods of estimation
 The common constant method 443
 The fixed effects method 444
 The random effects method 445
 The Hausman test 446
 Computer examples with panel data
 Inserting panel data in EViews 447
 Estimating a panel data regression in EViews 451
 The Hausman test in EViews 452
 Inserting panel data into Stata
 Estimating a panel data regression in Stata 455
 The Hausman test in Stata 456

22 Dynamic Heterogeneous Panels 457
 Learning objectives 457
 Introduction 458
 Bias in dynamic panels
 Bias in the simple OLS estimator 458
 Bias in the fixed effects model 459
 Bias in the random effects model 459
 Solutions to the bias problem (caused by the dynamic nature of the panel) 459
 Bias of heterogeneous slope parameters 460
 Solutions to heterogeneity bias: alternative methods of estimation
 The mean group (MG) estimator 461
 The pooled mean group (PMG) estimator 462
 Application: the effects of uncertainty in economic growth and investment
 Evidence from traditional panel data estimation 464
 Mean group and pooled mean group estimates 465

23 Non-Stationary Panels 467
 Learning objectives 467
 Introduction 468
 Panel unit-root tests
 The Levin and Lin (LL) test 469
 The Im, Pesaran and Shin (IPS) test 470
 The Maddala and Wu (MW) test 471
 Computer examples of panel unit-root tests 471
 Panel cointegration tests
 Introduction 473
 The Kao test 474
 The McCoskey and Kao test 475
 The Pedroni tests 476
 The Larsson et al. test 477
 Computer examples of panel cointegration tests 478
Contents

Part VII Using Econometric Software 483

24 Practicalities of Using EViews and Stata 485
 About EViews 486
 Starting up with EViews 486
 Creating a workfile and importing data 488
 Copying and pasting data 488
 Verifying and saving the data 489
 Examining the data 489
 Commands, operators and functions 490
 About Stata 491
 Starting up with Stata 491
 The Stata menu and buttons 492
 Creating a file when importing data 493
 Copying/pasting data 493
 Cross-sectional and time series data in Stata 494
 First way – time series data with no time variable 494
 Second way – time series data with time variable 495
 Time series – daily frequency 495
 Time series – monthly frequency 496
 All frequencies 497
 Saving data 497
 Basic commands in Stata 497
 Understanding command syntax in Stata 499

Appendix: Statistical Tables 501

Bibliography 507

Index 513