Modern Analysis of Customer Surveys
with applications using R

Edited by

Ron S. Kenett
KPA Ltd., Raanana, Israel, University of Turin, Italy, and NYU-Poly, Center for Risk Engineering, New York, USA

Silvia Salini
Department of Economics, Business and Statistics, University of Milan, Italy
Contents

Foreword xvii
Preface xix
Contributors xxiii

PART I BASIC ASPECTS OF CUSTOMER SATISFACTION SURVEY DATA ANALYSIS

1 Standards and classical techniques in data analysis of customer satisfaction surveys 3
 Silvia Salini and Ron S. Kenett
 1.1 Literature on customer satisfaction surveys 4
 1.2 Customer satisfaction surveys and the business cycle 4
 1.3 Standards used in the analysis of survey data 7
 1.4 Measures and models of customer satisfaction 12
 1.4.1 The conceptual construct 12
 1.4.2 The measurement process 13
 1.5 Organization of the book 15
 1.6 Summary 17
 References 17

2 The ABC annual customer satisfaction survey 19
 Ron S. Kenett and Silvia Salini
 2.1 The ABC company 19
 2.2 ABC 2010 ACSS: Demographics of respondents 20
 2.3 ABC 2010 ACSS: Overall satisfaction 22
 2.4 ABC 2010 ACSS: Analysis of topics 24
 2.5 ABC 2010 ACSS: Strengths and weaknesses and decision drivers 27
 2.6 Summary 28
 References 28
 Appendix 29

3 Census and sample surveys 37
 Giovanna Nicolini and Luciana Dalla Valle
 3.1 Introduction 37
CONTENTS

3.2 Types of surveys
 3.2.1 Census and sample surveys 39
 3.2.2 Sampling design 40
 3.2.3 Managing a survey 40
 3.2.4 Frequency of surveys 41

3.3 Non-sampling errors
 3.3.1 Measurement error 42
 3.3.2 Coverage error 42
 3.3.3 Unit non-response and non-self-selection errors 43
 3.3.4 Item non-response and non-self-selection error 44

3.4 Data collection methods 44

3.5 Methods to correct non-sampling errors
 3.5.1 Methods to correct unit non-response errors 46
 3.5.2 Methods to correct item non-response 49

3.6 Summary 51
 References 52

4 Measurement scales

Andrea Bonanomi and Gabriele Cantaluppi

4.1 Scale construction
 4.1.1 Nominal scale 56
 4.1.2 Ordinal scale 57
 4.1.3 Interval scale 58
 4.1.4 Ratio scale 59

4.2 Scale transformations
 4.2.1 Scale transformations referred to single items 61
 4.2.2 Scale transformations to obtain scores on a unique interval scale 66

Acknowledgements 69
 References 69

5 Integrated analysis

Silvia Biffignandi

5.1 Introduction 71

5.2 Information sources and related problems
 5.2.1 Types of data sources 73
 5.2.2 Advantages of using secondary source data 73
 5.2.3 Problems with secondary source data 74
 5.2.4 Internal sources of secondary information 75

5.3 Root cause analysis
 5.3.1 General concepts 78
 5.3.2 Methods and tools in RCA 81
 5.3.3 Root cause analysis and customer satisfaction 85

5.4 Summary 87
 Acknowledgement 87
 References 87
6 Web surveys
Roberto Furlan and Diego Martone

6.1 Introduction 89
6.2 Main types of web surveys 90
6.3 Economic benefits of web survey research 91
 6.3.1 Fixed and variable costs 92
6.4 Non-economic benefits of web survey research 94
6.5 Main drawbacks of web survey research 96
6.6 Web surveys for customer and employee satisfaction projects 100
6.7 Summary 102
References 102

7 The concept and assessment of customer satisfaction
Irena Ograjenšek and Iddo Gal

7.1 Introduction 107
7.2 The quality–satisfaction–loyalty chain 108
 7.2.1 Rationale 108
 7.2.2 Definitions of customer satisfaction 108
 7.2.3 From general conceptions to a measurement model of customer satisfaction 110
 7.2.4 Going beyond SERVQUAL: Other dimensions of relevance to the B2B context 112
 7.2.5 From customer satisfaction to customer loyalty 113
7.3 Customer satisfaction assessment: Some methodological considerations 115
 7.3.1 Rationale 115
 7.3.2 Think big: An assessment programme 115
 7.3.3 Back to basics: Questionnaire design 116
 7.3.4 Impact of questionnaire design on interpretation 118
 7.3.5 Additional concerns in the B2B setting 119
7.4 The ABC ACSS questionnaire: An evaluation 119
 7.4.1 Rationale 119
 7.4.2 Conceptual issues 119
 7.4.3 Methodological issues 120
 7.4.4 Overall ABC ACSS questionnaire assessment 121
7.5 Summary 121
References 122
Appendix 126

8 Missing data and imputation methods
Alessandra Mattel, Fabrizia Mealli and Donald B. Rubin

8.1 Introduction 129
8.2 Missing-data patterns and missing-data mechanisms 131
 8.2.1 Missing-data patterns 131
 8.2.2 Missing-data mechanisms and ignorability 132
8.3 Simple approaches to the missing-data problem 134
 8.3.1 Complete-case analysis 134
 8.3.2 Available-case analysis 135
 8.3.3 Weighting adjustment for unit nonresponse 135
10.3 Inference in classical randomized experiments
10.3.1 Fisher’s approach and extensions
10.3.2 Neyman’s approach to randomization-based inference
10.3.3 Covariates, regression models, and Bayesian model-based inference
10.4 Inference in observational studies
10.4.1 Inference in regular designs
10.4.2 Designing observational studies: The role of the propensity score
10.4.3 Estimation methods
10.4.4 Inference in irregular designs
10.4.5 Sensitivity and bounds
10.4.6 Broken randomized experiments as templates for the analysis of some irregular designs
References

11 Bayesian networks applied to customer surveys
Ron S. Kenett, Giovanni Perruca and Silvia Salini
11.1 Introduction to Bayesian networks
11.2 The Bayesian network model in practice
11.2.1 Bayesian network analysis of the ABC 2010 ACSS
11.2.2 Transport data analysis
11.2.3 R packages and other software programs used for studying BNs
11.3 Prediction and explanation
11.4 Summary
References

12 Log-linear model methods
Stephen E. Fienberg and Daniel Manrique-Vallier
12.1 Introduction
12.2 Overview of log-linear models and methods
12.2.1 Two-way tables
12.2.2 Hierarchical log-linear models
12.2.3 Model search and selection
12.2.4 Sparseness in contingency tables and its implications
12.2.5 Computer programs for log-linear model analysis
12.3 Application to ABC survey data
12.4 Summary
References

13 CUB models: Statistical methods and empirical evidence
Maria Iannario and Domenico Piccolo
13.1 Introduction
13.2 Logical foundations and psychological motivations
13.3 A class of models for ordinal data
13.4 Main inferential issues
13.5 Specification of CUB models with subjects' covariates 238
13.6 Interpreting the role of covariates 240
13.7 A more general sampling framework
 13.7.1 Objects' covariates 241
 13.7.2 Contextual covariates 243
13.8 Applications of CUB models 244
 13.8.1 Models for the ABC annual customer satisfaction survey 245
 13.8.2 Students' satisfaction with a university orientation service 246
13.9 Further generalizations 248
13.10 Concluding remarks 251
Acknowledgements 251
References 251
Appendix 255
A.1 Main structure of the program 255
A.2 Inference on CUB models 255
A.3 Output of CUB models estimation program 256
A.4 Visualization of several CUB models in the parameter space 257
A.5 Inference on CUB models in a multi-object framework 257
A.6 Advanced software support for CUB models 258

14 The Rasch model
Francesca De Battisti, Giovanna Nicolini and Silvia Salini
14.1 An overview of the Rasch model 259
 14.1.1 The origins and the properties of the model 259
 14.1.2 Rasch model for hierarchical and longitudinal data 263
 14.1.3 Rasch model applications in customer satisfaction surveys 265
14.2 The Rasch model in practice 267
 14.2.1 Single model 267
 14.2.2 Overall model 268
 14.2.3 Dimension model 272
14.3 Rasch model software 277
14.4 Summary 278
References 279

15 Tree-based methods and decision trees
Giuliano Galimberti and Gabriele Soffritti
15.1 An overview of tree-based methods and decision trees 283
 15.1.1 The origins of tree-based methods 283
 15.1.2 Tree graphs, tree-based methods and decision trees 284
 15.1.3 CART 287
 15.1.4 CHAID 293
 15.1.5 PARTY 295
 15.1.6 A comparison of CART, CHAID and PARTY 297
 15.1.7 Missing values 297
 15.1.8 Tree-based methods for applications in customer satisfaction surveys 298
15.2 Tree-based methods and decision trees in practice
15.2.1 ABC ACSS data analysis with tree-based methods
15.2.2 Packages and software implementing tree-based methods
15.3 Further developments
References

16 PLS models
Giuseppe Boari and Gabriele Cantaluppi
16.1 Introduction
16.2 The general formulation of a structural equation model
16.2.1 The inner model
16.2.2 The outer model
16.3 The PLS algorithm
16.4 Statistical interpretation of PLS
16.5 Geometrical interpretation of PLS
16.6 Comparison of the properties of PLS and LISREL procedures
16.7 Available software for PLS estimation
16.8 Application to real data: Customer satisfaction analysis
References

17 Nonlinear principal component analysis
Pier Alda Ferrari and Alessandro Barbiero
17.1 Introduction
17.2 Homogeneity analysis and nonlinear principal component analysis
17.2.1 Homogeneity analysis
17.2.2 Nonlinear principal component analysis
17.3 Analysis of customer satisfaction
17.3.1 The setting up of indicator
17.3.2 Additional analysis
17.4 Dealing with missing data
17.5 Nonlinear principal component analysis versus two competitors
17.6 Application to the ABC ACSS data
17.6.1 Data preparation
17.6.2 The homals package
17.6.3 Analysis on the 'complete subset'
17.6.4 Comparison of NLPCA with PCA and Rasch analysis
17.6.5 Analysis of 'entire data set' for the comparison of missing data treatments
17.7 Summary
References

18 Multidimensional scaling
Nadia Solaro
18.1 An overview of multidimensional scaling techniques
18.1.1 The origins of MDS models
18.1.2 MDS input data
18.1.3 MDS models
18.1.4 Assessing the goodness of MDS solutions
18.1.5 Comparing two MDS solutions: Procrustes analysis
18.1.6 Robustness issues in the MDS framework
18.1.7 Handling missing values in MDS framework
18.1.8 MDS applications in customer satisfaction surveys

18.2 Multidimensional scaling in practice
18.2.1 Data sets analysed
18.2.2 MDS analyses of overall satisfaction with a set of ABC features: The complete data set
18.2.3 Weighting objects or items
18.2.4 Robustness analysis with the forward search
18.2.5 MDS analyses of overall satisfaction with a set of ABC features: The incomplete data set
18.2.6 Package and software for MDS methods

18.3 Multidimensional scaling in a future perspective

18.4 Summary

References

19 Multilevel models for ordinal data
Leonardo Grilli and Carla Rampichini

19.1 Ordinal variables

19.2 Standard models for ordinal data
19.2.1 Cumulative models
19.2.2 Other models

19.3 Multilevel models for ordinal data
19.3.1 Representation as an underlying linear model with thresholds
19.3.2 Marginal versus conditional effects
19.3.3 Summarizing the cluster-level unobserved heterogeneity
19.3.4 Consequences of adding a covariate
19.3.5 Predicted probabilities
19.3.6 Cluster-level covariates and contextual effects
19.3.7 Estimation of model parameters
19.3.8 Inference on model parameters
19.3.9 Prediction of random effects
19.3.10 Software

19.4 Multilevel models for ordinal data in practice: An application to student ratings

References

20 Quality standards and control charts applied to customer surveys
Ron S. Kenett, Laura Deldossi and Diego Zappa

20.1 Quality standards and customer satisfaction
20.2 ISO 10004 guidelines for monitoring and measuring customer satisfaction
20.3 Control Charts and ISO 7870
20.4 Control charts and customer surveys: Standard assumptions 420
 20.4.1 Introduction 420
 20.4.2 Standard control charts 420

20.5 Control charts and customer surveys: Non-standard methods 426
 20.5.1 Weights on counts: Another application of the c chart 426
 20.5.2 The χ^2 chart 427
 20.5.3 Sequential probability ratio tests 428
 20.5.4 Control chart over items: A non-standard application of SPC methods 429
 20.5.5 Bayesian control chart for attributes: A modern application of SPC methods 432
 20.5.6 Control chart for correlated Poisson counts: When things become fairly complicated 433

20.6 The M-test for assessing sample representation 433

20.7 Summary 435

References 436

21 Fuzzy Methods and Satisfaction Indices 439
 Sergio Zani, Maria Adele Milioli and Isabella Morlini

 21.1 Introduction 439
 21.2 Basic definitions and operations 440
 21.3 Fuzzy numbers 441
 21.4 A criterion for fuzzy transformation of variables 443
 21.5 Aggregation and weighting of variables 445
 21.6 Application to the ABC customer satisfaction survey data 446
 21.6.1 The input matrices 446
 21.6.2 Main results 448
 21.7 Summary 453

References 455

Appendix An introduction to R 457
 Stefano Maria Iacus

 A.1 Introduction 457
 A.2 How to obtain R 457
 A.3 Type rather than 'point and click'
 A.3.1 The workspace 458
 A.3.2 Graphics 458
 A.3.3 Getting help 459
 A.3.4 Installing packages 459
 A.4 Objects 460
 A.4.1 Assignments 460
 A.4.2 Basic object types 462
 A.4.3 Accessing objects and subsetting 466
 A.4.4 Coercion between data types 469
 A.5 S4 objects 470
 A.6 Functions 472
CONTENTS

A.7 Vectorization 473
A.8 Importing data from different sources 475
A.9 Interacting with databases 476
A.10 Simple graphics manipulation 477
A.11 Basic analysis of the ABC data 481
A.12 About this document 496
A.13 Bibliographical notes
 References 496

Index 499