Handbook of Computational Econometrics

Edited by

David A. Belsley
Boston College, USA

Erricos John Kontogiorghes
University of Cyprus and Queen Mary, University of London, UK
Contents

List of Contributors xv

Preface xvii

1 Econometric software 1
Charles G. Renfro

1.1 Introduction 1

1.2 The nature of econometric software 5
 1.2.1 The characteristics of early econometric software 9
 1.2.2 The expansive development of econometric software 11
 1.2.3 Econometric computing and the microcomputer 17

1.3 The existing characteristics of econometric software 19
 1.3.1 Software characteristics: broadening and deepening 21
 1.3.2 Software characteristics: interface development 25
 1.3.3 Directives versus constructive commands 29
 1.3.4 Econometric software design implications 35

1.4 Conclusion 39

Acknowledgments 41

References 41

2 The accuracy of econometric software 55
B. D. McCullough

2.1 Introduction 55

2.2 Inaccurate econometric results 56
 2.2.1 Inaccurate simulation results 57
 2.2.2 Inaccurate GARCH results 58
 2.2.3 Inaccurate VAR results 62

2.3 Entry-level tests 65

2.4 Intermediate-level tests 66
 2.4.1 NIST Statistical Reference Datasets 67
3 Heuristic optimization methods in econometrics

Manfred Gilli and Peter Winker

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Traditional numerical versus heuristic optimization methods</td>
<td>81</td>
</tr>
<tr>
<td>3.1.1 Optimization in econometrics</td>
<td>81</td>
</tr>
<tr>
<td>3.1.2 Optimization heuristics</td>
<td>83</td>
</tr>
<tr>
<td>3.1.3 An incomplete collection of applications of optimization heuristics in econometrics</td>
<td>85</td>
</tr>
<tr>
<td>3.1.4 Structure and instructions for use of the chapter</td>
<td>86</td>
</tr>
<tr>
<td>3.2 Heuristic optimization</td>
<td>87</td>
</tr>
<tr>
<td>3.2.1 Basic concepts</td>
<td>87</td>
</tr>
<tr>
<td>3.2.2 Trajectory methods</td>
<td>88</td>
</tr>
<tr>
<td>3.2.3 Population-based methods</td>
<td>90</td>
</tr>
<tr>
<td>3.2.4 Hybrid metaheuristics</td>
<td>93</td>
</tr>
<tr>
<td>3.3 Stochastics of the solution</td>
<td>97</td>
</tr>
<tr>
<td>3.3.1 Optimization as stochastic mapping</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2 Convergence of heuristics</td>
<td>99</td>
</tr>
<tr>
<td>3.3.3 Convergence of optimization-based estimators</td>
<td>101</td>
</tr>
<tr>
<td>3.4 General guidelines for the use of optimization heuristics</td>
<td>102</td>
</tr>
<tr>
<td>3.4.1 Implementation</td>
<td>103</td>
</tr>
<tr>
<td>3.4.2 Presentation of results</td>
<td>108</td>
</tr>
<tr>
<td>3.5 Selected applications</td>
<td>109</td>
</tr>
<tr>
<td>3.5.1 Model selection in VAR models</td>
<td>109</td>
</tr>
<tr>
<td>3.5.2 High breakdown point estimation</td>
<td>111</td>
</tr>
<tr>
<td>3.6 Conclusions</td>
<td>114</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td>115</td>
</tr>
</tbody>
</table>

4 Algorithms for minimax and expected value optimization

Panos Parpas and Berç Rustem

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>121</td>
</tr>
<tr>
<td>4.2 An interior point algorithm</td>
<td>122</td>
</tr>
<tr>
<td>4.2.1 Subgradient of $\Phi(x)$ and basic iteration</td>
<td>125</td>
</tr>
<tr>
<td>4.2.2 Primal–dual step size selection</td>
<td>130</td>
</tr>
<tr>
<td>4.2.3 Choice of c and μ</td>
<td>131</td>
</tr>
<tr>
<td>4.3 Global optimization of polynomial minimax problems</td>
<td>137</td>
</tr>
<tr>
<td>4.3.1 The algorithm</td>
<td>138</td>
</tr>
<tr>
<td>4.4 Expected value optimization</td>
<td>143</td>
</tr>
<tr>
<td>4.4.1 An algorithm for expected value optimization</td>
<td>145</td>
</tr>
</tbody>
</table>
CONTENTS ix

4.5 Evaluation framework for minimax robust policies and expected value optimization 147
Acknowledgments 148
References 148

5 Nonparametric estimation 153
Rand R. Wilcox

5.1 Introduction 153
5.1.1 Comments on software 155
5.2 Density estimation 156
5.2.1 Some illustrations 158
5.3 Nonparametric regression 160
5.3.1 An illustration 164
5.3.2 Multiple predictors 166
5.3.3 Some illustrations 169
5.3.4 Estimating conditional associations 169
5.3.5 An illustration 170
5.4 Nonparametric inferential techniques 171
5.4.1 Some motivating examples 171
5.4.2 A bootstrap-\(t\) method 172
5.4.3 The percentile bootstrap method 173
5.4.4 Simple ordinary least squares regression 174
5.4.5 Regression with multiple predictors 175

References 177

6 Bootstrap hypothesis testing 183
James G. MacKinnon

6.1 Introduction 183
6.2 Bootstrap and Monte Carlo tests 184
6.3 Finite-sample properties of bootstrap tests 187
6.4 Double bootstrap and fast double bootstrap tests 189
6.5 Bootstrap data generating processes 193
6.5.1 Resampling and the pairs bootstrap 193
6.5.2 The residual bootstrap 195
6.5.3 The wild bootstrap 196
6.5.4 Bootstrap DGPs for multivariate regression models 197
6.5.5 Bootstrap DGPs for dependent data 198
6.6 Multiple test statistics 200
6.6.1 Tests for structural change 201
6.6.2 Point-optimal tests 202
6.6.3 Non-nested hypothesis tests 203
6.7 Finite-sample properties of bootstrap sup\(F\) tests 204
6.8 Conclusion 210
Acknowledgments 210
References 210
7 Simulation-based Bayesian econometric inference: principles and some recent computational advances 215
Lennart F. Hoogerheide, Herman K. van Dijk and Rutger D. van Oest

7.1 Introduction 215
7.2 A primer on Bayesian inference 217
 7.2.1 Motivation for Bayesian inference 217
 7.2.2 Bayes’ theorem as a learning device 218
 7.2.3 Model evaluation and model selection 225
 7.2.4 Comparison of Bayesian inference and frequentist approach 232
7.3 A primer on simulation methods 233
 7.3.1 Motivation for using simulation techniques 233
 7.3.2 Direct sampling methods 234
 7.3.3 Indirect sampling methods yielding independent draws 236
 7.3.4 Markov chain Monte Carlo: indirect sampling methods yielding dependent draws 249
7.4 Some recently developed simulation methods 261
 7.4.1 Adaptive radial-based direction sampling 262
 7.4.2 Adaptive mixtures of t distributions 272
7.5 Concluding remarks 276
Acknowledgments 277
References 277

8 Econometric analysis with vector autoregressive models 281
Helmut Lütkepohl

8.1 Introduction 281
 8.1.1 Integrated variables 282
 8.1.2 Structure of the chapter 283
 8.1.3 Terminology and notation 284
8.2 VAR processes 285
 8.2.1 The levels VAR representation 285
 8.2.2 The VECM representation 286
 8.2.3 Structural forms 288
8.3 Estimation of VAR models 289
 8.3.1 Estimation of unrestricted VARs 289
 8.3.2 Estimation of VECMs 291
 8.3.3 Estimation with linear restrictions 293
 8.3.4 Bayesian estimation of VARs 294
8.4 Model specification 295
 8.4.1 Choosing the lag order 295
 8.4.2 Choosing the cointegrating rank of a VECM 297
8.5 Model checking 298
 8.5.1 Tests for residual autocorrelation 298
 8.5.2 Tests for non-normality 300
 8.5.3 ARCH tests 301
 8.5.4 Stability analysis 301
8.6 Forecasting 303
CONTENTS

8.6.1 Known processes 303
8.6.2 Estimated processes 304
8.7 Causality analysis 305
8.7.1 Intuition and theory 305
8.7.2 Testing for Granger-causality 306
8.8 Structural VARs and impulse response analysis 306
8.8.1 Levels VARs 306
8.8.2 Structural VECMs 308
8.8.3 Estimating impulse responses 309
8.8.4 Forecast error variance decompositions 310
8.9 Conclusions and extensions 311
Acknowledgments 311
References 312

9 Statistical signal extraction and filtering: a partial survey 321
D. Stephen G. Pollock

9.1 Introduction: the semantics of filtering 321
9.2 Linear and circular convolutions 322
9.2.1 Kernel smoothing 324
9.3 Local polynomial regression 326
9.4 The concepts of the frequency domain 332
9.4.1 The periodogram 334
9.4.2 Filtering and the frequency domain 335
9.4.3 Aliasing and the Shannon–Nyquist sampling theorem 337
9.4.4 The processes underlying the data 339
9.5 The classical Wiener–Kolmogorov theory 341
9.6 Matrix formulations 345
9.6.1 Toeplitz matrices 346
9.6.2 Circulant matrices 348
9.7 Wiener–Kolmogorov filtering of short stationary sequences 350
9.8 Filtering nonstationary sequences 354
9.9 Filtering in the frequency domain 359
9.10 Structural time-series models 360
9.11 The Kalman filter and the smoothing algorithm 368
9.11.1 The smoothing algorithms 371
9.11.2 Equivalent and alternative procedures 372
References 373

10 Concepts of and tools for nonlinear time-series modelling 377
Alessandra Amendola and Christian Francq

10.1 Introduction 377
10.2 Nonlinear data generating processes and linear models 382
10.2.1 Linear and nonlinear processes 382
10.2.2 Linear representation of nonlinear processes 384
10.3 Testing linearity 385
10.3.1	Weak white noise and strong white noise testing	386
10.3.2	Testing linearity against a specific nonlinear model	389
10.3.3	Testing linearity when the model is not identified under the null	392
10.4	Probabilistic tools	395
10.4.1	A strict stationarity condition	395
10.4.2	Second-order stationarity and existence of moments	397
10.4.3	Mixing coefficients	398
10.4.4	Geometric ergodicity and mixing properties	399
10.5	Identification, estimation and model adequacy checking	401
10.5.1	Consistency of the QMLE	402
10.5.2	Asymptotic distribution of the QMLE	404
10.5.3	Identification and model adequacy	406
10.6	Forecasting with nonlinear models	409
10.6.1	Forecast generation	409
10.6.2	Interval and density forecasts	412
10.6.3	Volatility forecasting	414
10.6.4	Forecast combination	415
10.7	Algorithmic aspects	416
10.7.1	MCMC methods	416
10.7.2	Optimization algorithms for models with several latent processes	418
10.8	Conclusion	422
Acknowledgments	422	
References	422	

11 Network economics

Anna Nagurney

11.1	Introduction	429
11.2	Variational inequalities	432
11.2.1	Systems of equations	433
11.2.2	Optimization problems	434
11.2.3	Complementarity problems	436
11.2.4	Fixed point problems	438
11.3	Transportation networks: user optimization versus system optimization	443
11.3.1	Transportation network equilibrium with travel disutility functions	444
11.3.2	Elastic demand transportation network problems with known travel demand functions	447
11.3.3	Fixed demand transportation network problems	449
11.3.4	The system-optimized problem	450
11.4	Spatial price equilibria	454
11.4.1	The quantity model	455
11.4.2	The price model	457
11.5	General economic equilibrium	458
11.6	Oligopolistic market equilibria	459
11.6.1 The classical oligopoly problem 460
11.6.2 A spatial oligopoly model 461
11.7 Variational inequalities and projected dynamical systems 463
11.7.1 Background 463
11.7.2 The projected dynamical system 465
11.8 Dynamic transportation networks 470
11.8.1 The path choice adjustment process 470
11.8.2 Stability analysis 472
11.8.3 Discrete-time algorithms 473
11.8.4 A dynamic spatial price model 475
11.9 Supernetworks: applications to telecommuting decision making and teleshopping decision making 476
11.10 Supply chain networks and other applications 478
Acknowledgments 480
References 480

Index 487