Game-Theoretic Foundations for Probability and Finance

GLENN SHAFER
Rutgers Business School

VLADIMIR VOVK
Royal Holloway, University of London

WILEY
Contents

Preface xi
Acknowledgments xv

Part I Examples in Discrete Time 1

1 Borel’s Law of Large Numbers 5
1.1 A Protocol for Testing Forecasts 6
1.2 A Game-Theoretic Generalization of Borel’s Theorem 8
1.3 Binary Outcomes 16
1.4 Slackenings and Supermartingales 18
1.5 Calibration 19
1.6 The Computation of Strategies 21
1.7 Exercises 21
1.8 Context 24

2 Bernoulli’s and De Moivre’s Theorems 31
2.1 Game-Theoretic Expected Value and Probability 33
2.2 Bernoulli’s Theorem for Bounded Forecasting 37
2.3 A Central Limit Theorem 39
2.4 Global Upper Expected Values for Bounded Forecasting 45
7 Abstract Testing Protocols

7.1 Terminology and Notation
7.2 Supermartingales
7.3 Global Upper Expected Values
7.4 Lindeberg's Central Limit Theorem for Martingales
7.5 General Abstract Testing Protocols
7.6 Making the Results of Part I Abstract
7.7 Exercises
7.8 Context

8 Zero-One Laws

8.1 Lévy's Zero-One Law
8.2 Global Upper Expectation
8.3 Global Upper and Lower Probabilities
8.4 Global Expected Values and Probabilities
8.5 Other Zero-One Laws
8.6 Exercises
8.7 Context

9 Relation to Measure-Theoretic Probability

9.1 Ville's Theorem
9.2 Measure-Theoretic Representation of Upper Expectations
9.3 Embedding Game-Theoretic Martingales in Probability Spaces
9.4 Exercises
9.5 Context

Part III Applications in Discrete Time

10 Using Testing Protocols in Science and Technology
10.1 Signals in Open Protocols
10.2 Cournot's Principle
10.3 Daltonism 202
10.4 Least Squares 207
10.5 Parametric Statistics with Signals 212
10.6 Quantum Mechanics 215
10.7 Jeffreys's Law 217
10.8 Exercises 225
10.9 Context 226

11 Calibrating Lookbacks and p-Values 229
11.1 Lookback Calibrators 230
11.2 Lookback Protocols 235
11.3 Lookback Compromises 241
11.4 Lookbacks in Financial Markets 242
11.5 Calibrating p-Values 245
11.6 Exercises 248
11.7 Context 250

12 Defensive Forecasting 253
12.1 Defeating Strategies for Skeptic 255
12.2 Calibrated Forecasts 259
12.3 Proving the Calibration Theorems 264
12.4 Using Calibrated Forecasts for Decision Making 270
12.5 Proving the Decision Theorems 274
12.6 From Theory to Algorithm 286
12.7 Discontinuous Strategies for Skeptic 291
12.8 Exercises 295
12.9 Context 299

Part IV Game-Theoretic Finance 305

13 Emergence of Randomness in Idealized Financial Markets 309
13.1 Capital Processes and Instant Enforcement 310
13.2 Emergence of Brownian Randomness 312
13.3 Emergence of Brownian Expectation 320
13.4 Applications of Dubins–Schwarz 325
13.5 Getting Rich Quick with the Axiom of Choice 331
13.6 Exercises 333
13.7 Context 334

14 A Game-Theoretic Itô Calculus 339
14.1 Martingale Spaces 340
14.2 Conservatism of Continuous Martingales 348
14.3 Itô Integration 350
14.4 Covariation and Quadratic Variation 355
14.5 Itô’s Formula 357
14.6 Doléans Exponential and Logarithm 358
14.7 Game-Theoretic Expectation and Probability 360
14.8 Game-Theoretic Dubins–Schwarz Theorem 361
14.9 Coherence 362
14.10 Exercises 363
14.11 Context 365

15 Numeraires in Market Spaces 371
15.1 Market Spaces 372
15.2 Martingale Theory in Market Spaces 375
15.3 Girsanov’s Theorem 376
15.4 Exercises 382
15.5 Context 382

16 Equity Premium and CAPM 385
16.1 Three Fundamental Continuous I-Martingales 387
16.2 Equity Premium 389
16.3 Capital Asset Pricing Model 391
16.4 Theoretical Performance Deficit 395
16.5 Sharpe Ratio 396
16.6 Exercises 397
16.7 Context 398

17 Game-Theoretic Portfolio Theory 403
17.1 Stroock–Varadhan Martingales 405
17.2 Boosting Stroock–Varadhan Martingales 407
17.3 Outperforming the Market with Dubins–Schwarz 413
17.4 Jeffreys’s Law in Finance 414