Vital Statistics

Probability and Statistics for Economics and Business

William H. Sandholm

University of Wisconsin-Madison

Brett A. Saraniti

Northwestern University

New York Oxford
OXFORD UNIVERSITY PRESS

Contents

Asterisks indicate sections tangential to the main line of argument.

Preface for Students xxvii Preface for Instructors xxix Supplements xxxv Acknowledgments xxxvii

1.	Rando	m Rea	asoning 1	
	1.1	Introd	luction	1
	1.2	Proba	bility	2
	1.3	Statis	tics	7
	1.4	Concl	usion	10
2.	Probab	ility N	Models 11	
	2.1	Ex Ar	ite vs. Ex Post	12
	2.2	Samp	le Spaces	14
		2.2.1	Sample spaces, outcomes, and events	14
		2.2.2	New events from old	16
	2.3	Proba	bility Measures	18
		2.3.1	The axioms of probability	18
		2.3.2	Further properties of probability measures	20
		2.3.3	Interpreting and assigning probabilities	23
	2.4	Condi	tional Probability	24
		2.4.1	What is conditional probability?	25
		2.4.2	Joint, marginal, and conditional probabilities	29
		2.4.3	The total probability rule	30
		2.4.4	Bayes' rule	31

	2.5	Indep	endence	36
		2.5.1	Independence of pairs of events	36
		2.5.2	Independence of many events	38
		2.5.3	Independence of many events: A formal treatment*	41
	2.6	Const	ructing Probability Models*	44
		2.6.1	Two probability problems	44
		2.6.2	Discussion of the Linda problem	45
		2.6.3	Discussion of the Monty Hall problem	46
	2.A	Appe	ndix: Finite and Countable Additivity	50
	2.E	Exerc	ises	51
3.	Randor	n Var	iables 65	
	3.1	Rand	om Variables	65
		3.1.1	What exactly is a random variable?	66
		3.1.2	Ex ante vs. ex post revisited	68
		3.1.3	The distribution of a random variable	68
	3.2	Traits	of Random Variables	70
		3.2.1	Expected value	70
		3.2.2	Variance and standard deviation	73
		3.2.3	An alternate formula for expected values*	77
	3.3	Funct	ions of Random Variables	79
	3.4	Indep	endent Random Variables	86
		3.4.1	Independence of two random variables	86
		3.4.2	Independence of many random variables	88
		3.4.3	Sums of independent random variables	89
		3.4.4	New independent random variables from old	93
	3.E	Exerc	ises	95
4.	Multipl	e Ran	dom Variables 106	
	4.1	Multip	ole Random Variables	106
		4.1.1	Joint distributions and marginal distributions	108
		4.1.2	Conditional distributions	110
		4.1.3	Conditional traits and the law of iterated expectations	112

ix

	4.2	Traits	of Random Variable Pairs	114
		4.2.1	Covariance	114
		4.2.2	Correlation	116
		4.2.3	Some useful facts	120
		4.2.4	Independence and zero correlation	121
	4.3	Funct	ions of Multiple Random Variables	123
	4.4	Portfo	olio Selection*	127
		4.4.1	A simple model of a financial market	127
		4.4.2	Portfolio selection and diversification	128
		4.4.3	Efficient portfolios	131
		4.4.4	The benefits of diversification	133
	4.A	Apper	ndix	138
		4.A.1	Definitions, formulas, and facts about random variables	138
		4.A.2	Derivations of formulas and facts	141
	4.B	The C	Capital Asset Pricing Model	online
	4.E	Exerc	ises	145
5.	Distribu	utions	s 158	
	5.1	Famil	ies of Distributions	159
		5.1.1	Indicator random variables	159
		5.1.2	Bernoulli distributions	160
		5.1.3	Traits of Bernoulli random variables	161
	5.2	Berno	ulli Trials Processes	163
	5.3	How t	o Count	165
		5.3.1	Choice sequences	165
		5.3.2	Orderings	166
		5.3.3	Permutations	167
		5.3.4	Combinations	169
	5.4	Binom	nial Distributions	170
		5.4.1	Definition	171
		5.4.2	Another way to represent binomial distributions	174
		5.4.3	Traits of binomial random variables	175

	5.5	Simul	ation and Mathematical Analysis of Probability Models*	177
		5.5.1	The birthday problem	177
		5.5.2	Simulations	177
		5.5.3	Mathematical analysis	178
		5.5.4	Simulation versus mathematical analysis	180
	5.E	Exerc	ises	181
6.	Continu	uous	Random Variables and Distributions	191
	6.1	Conti	nuous Probability Models	192
		6.1.1	Why bother with continuous probability models?	192
		6.1.2	"Probability zero" and "impossible"	192
	6.2	Conti	nuous Random Variables and Distributions	194
		6.2.1	Cumulative probabilities	194
		6.2.2	Density functions	197
		6.2.3	Density functions: Intuition	204
		6.2.4	Percentiles of continuous distributions	205
		6.2.5	Traits of continuous random variables	206
	6.3	Unifo	rm Distributions	206
		6.3.1	Definition	207
		6.3.2	Traits	209
		6.3.3	Shifting and scaling	209
	6.4	Norm	al Distributions	212
		6.4.1	Shifting, scaling, and the standard normal distribution	212
		6.4.2	Standard normal probabilities	214
		6.4.3	Normal probabilities	217
	6.5	Calcul	lating Normal Probabilities Using the Table	220
		6.5.1	The standard normal distribution table	221
		6.5.2	Calculating standard normal probabilities	223
		6.5.3	Calculating normal probabilities	225
	6.6	Sums	of Independent Normal Random Variables	228
		6.6.1	Distributions of sums of independent random variables	228
		6.6.2	Brownian motion*	231

	6.A	Conti	nuous Distributions (using calculus)	online
	6.B	Conti	nuous Joint Distributions (using calculus)	online
	6.E	Exerc	ises	235
7.	The Ce	ntral I	Limit Theorem 248	
	7.1	I.I.D.	Random Variables	249
	7.2	Sums	and Sample Means of I.I.D. Random Variables	252
		7.2.1	Definition	252
		7.2.2	Traits of sums and sample means of i.i.d. random variables	254
	7.3	The L	aw of Large Numbers	258
		7.3.1	Statement of the law of large numbers	258
		7.3.2	The law of large numbers and the "law of averages"	260
		7.3.3	Proving the law of large numbers*	261
	7.4	The C	entral Limit Theorem	262
		7.4.1	Convergence in distribution	263
		7.4.2	Statement of the central limit theorem	264
		7.4.3	Simulations with continuous trials	266
		7.4.4	The continuity correction	269
		7.4.5	Simulations with discrete trials	275
	7.5	The C	entral Limit Theorem: Applications	276
		7.5.1	Normal approximation of binomial distributions	276
		7.5.2	Gambling	279
		7.5.3	Queues	279
		7.5.4	Statistical inference	282
	7.A	Proof	of the Central Limit Theorem	online
	7.E	Exerci	ises	284
8.	Poisson	and	Exponential Distributions 295	
	8.1	Poisso	n Distributions and the Poisson Limit Theorem	296
		8.1.1	e	297
		8.1.2	Poisson distributions	300
		8.1.3	The Poisson limit theorem	303

	8.2	Expone	ntial Distributions	309
		8.2.1	Definition	309
		8.2.2	Probabilities and traits	311
		8.2.3	Peculiar properties	313
	8.3	The Exp	ponential Interarrival Model and the Poisson Process*	318
	8.A	Append	lix	321
	8.E	Exercise	es	322
9.	The Psy	cholo	gy of Probability 332	
	9.1	Though	t Experiments	334
	9.2	Framing	g Effects	335
	9.3	Overcor	nfidence	339
	9.4	Misestir	nating the Impact of Evidence	342
	9.5	The "La	aw of Small Numbers"	345
	9.6	Gambli	ng Systems and Technical Trading Strategies	351
	9. E	Exercise	es	356
10.	How to	Lie wi	th Statistics 365	
	10.1	Introdu	ction	366
	10.2	Variatio	on .	367
		10.2.1	Variation within a population	367
		10.2.2	Variation within subgroups: Simpson's paradox	369
		10.2.3	Variation in the results of random samples	372
	10.3	Polls an	d Sampling	373
		10.3.1	Sampling from the wrong population	373
		10.3.2	Designing polls: Wording of questions	374
		10.3.3	Designing polls: Selection of response alternatives	376
		10.3.4	Designing polls: Arrangement of questions	377
		10.3.5	Administering polls: Ensuring honest reporting	378
		10.3.6	When can I trust a poll?	379
	10.4	Endoger	nous Sampling Biases	380

		Contents XIII
10.5	Causal Inference and Extrapolation	382
	10.5.1 Confounding variables	383
	10.5.2 Spurious correlation and data mining	384
	10.5.3 Linear extrapolation of nonlinear data	385
10.H	E Exercises	387
1. Data G	raphics 393	
11.1	Data	394
	11.1.1 Types of variables	395
	11.1.2 Types of data sets	397
	11.1.3 Sources of economic and business data	398
11.2	Graphics for Univariate Data	399
	11.2.1 Graphics that display every observation	399
	11.2.2 Graphics for absolute and relative frequencies	402
	11.2.3 Graphics for cumulative frequencies	408
11.3	Graphics for Multivariate Data	410
	11.3.1 Graphics for frequencies	410
	11.3.2 Graphics that display every observation	411
11.4	Principles for Data Graphics Design	418
	11.4.1 First, do no harm	418
	11.4.2 Infographics	419
	11.4.3 One step beyond	421
11.A	Appendix: Creating Data Graphics in Excel	online
11.E	Exercises	427
2. Descrip	otive Statistics 435	
12.1	Descriptive Statistics for Univariate Data	436
	12.1.1 Measures of relative standing: Percentiles and ranges	436
	12.1.2 Measures of centrality: Mean and median	440
	12.1.3 Measures of dispersion: Variance and standard devia	tion 441

	12.2	Descriptive Statistics for Bivariate Data	446
		12.2.1 Measures of linear association: Covariance	
		and correlation	446
		12.2.2 Visualizing correlations	448
		12.2.3 Computing correlations: Arithmetic, pictures, or computer	451
		12.2.4 The road ahead: Regression analysis	456
	12.E	Exercises	457
13.	Probab	ility Models for Statistical Inference 464	
	13.1	Introduction	465
	13.2	The I.I.D. Trials Model for Statistical Inference	467
	13.3	Inference about Inherently Random Processes	468
		13.3.1 Bernoulli trials	469
		13.3.2 Trials with an unknown distribution	470
	13.4	Random Sampling and Inference about Populations	470
		13.4.1 Random sampling	470
		13.4.2 The trials' traits equal the data set's descriptive statistics	472
		13.4.3 Bernoulli trials	474
		13.4.4 Trials with an unknown distribution	475
	13.5	Random Sampling in Practice	476
	13.E	Exercises	482
14.	Point Es	stimation 487	
	14.1	Parameters, Estimators, and Estimates	488
	14.2	Desirable Properties of Point Estimators	490
	14.3	The Sample Mean	492
		14.3.1 Unbiasedness and consistency	493
		14.3.2 Efficiency	495
		14.3.3 The distribution of the sample mean	498
	14.4	The Sample Variance	499
		14.4.1 Defining the sample variance	500
		14.4.2 Unbiasedness and consistency of the sample variance	502
	14.5	Classical Statistics and Bayesian Statistics*	505

	14.A	Appendix: A Short Introduction to Bayesian Statistics	507
	14.B	Appendix: Derivations of Properties of the Sample Variance	515
	14.E	Exercises	517
15.	Interval	Estimation and Confidence Intervals 527	
	15.1	What Is Interval Estimation?	528
	15.2	Constructing Interval Estimators	529
		15.2.1 The 95% interval estimator for μ when σ^2 is known	530
		15.2.2 The 95% interval estimator for μ when σ^2 is unknown	534
		15.2.3 The $(1 - \alpha)$ interval estimator for μ when σ^2 is unknown	535
		15.2.4 Looking ahead: Standard errors and t distributions	538
	15.3	Interval Estimators for Bernoulli Trials	539
	15.4	Interpreting Confidence	541
	15.5	Choosing Sample Sizes	548
		15.5.1 Sample sizes for general i.i.d. trials	548
		15.5.2 Sample sizes for Bernoulli trials processes	550
	15.6	A Better Interval Estimator for Bernoulli Trials*	552
	15.E	Exercises	557
16.	Hypoth	esis Testing 567	
	16.1	What Is Hypothesis Testing?	568
	16.2	Hypothesis Testing: Basic Concepts	569
		16.2.1 The probability model	570
		16.2.2 Null and alternative hypotheses	571
		16.2.3 One-tailed and two-tailed tests	573
		16.2.4 Hypothesis tests and their significance levels	574
	16.3	Designing Hypothesis Tests	575
		16.3.1 Hypothesis tests for μ when σ^2 is known	575
		16.3.2 Hypothesis tests for μ when σ^2 is unknown	581
		16.3.3 Hypothesis tests for Bernoulli trials	582
	16.4	Two-Tailed Hypothesis Tests	585
		16.4.1 Two-tailed tests vs. one-tailed tests	587
		16.4.2 Comparing two-tailed hypothesis tests and confidence intervals	588

	16.5	Alternate Ways of Expressing Hypothesis Tests	591
		16.5.1 z-statistics	591
		16.5.2 P-values	593
	16.6	Interpreting Hypothesis Tests	597
		16.6.1 The meaning of significance	597
		16.6.2 "Do not reject" vs. "accept"	598
		16.6.3 Statistical significance versus practical significance	599
		16.6.4 P-value .049 vs. P-value .051	602
		16.6.5 Hypothesis testing in a vacuum	602
	16.7	Significance and Power	604
		16.7.1 Type I and Type II errors	605
		16.7.2 Evaluating error probabilities	606
		16.7.3 The power curve	612
		16.7.4 Underpowered studies	616
	16.8	Choosing Sample Sizes	619
		16.8.1 Sample sizes for general i.i.d. trials	619
		16.8.2 Sample sizes for Bernoulli trials processes	621
	16.9	Summary and Preview	623
	16.E	Exercises	625
17.	Inferen	ce from Small Samples 641	
	17.1	The t-Statistic	642
	17.2	t Distributions	644
	17.3	Small-Sample Inference about the Mean of Normal Trials	648
		17.3.1 The <i>t</i> -statistic and the <i>t</i> distribution	648
		17.3.2 Interval estimation	648
		17.3.3 Hypothesis testing	650
	17.4	Sort-of-Normal Trials: The Robustness of the <i>t</i> -Statistic	652
	17.5	Evaluating Normality of Trials*	657
	17.A	Appendix: Descendants of the Standard Normal Distribution	online
	17.E	Exercises	663

ī	0
ı	KO T

	iiileren	ce ab	out Differences in Means 671	
	18.1	Infere	nce from Two Separate Samples	67:
		18.1.1	The basic two-sample model	672
		18.1.2	Bernoulli trials	670
		18.1.3	Small samples, normal trials, equal variances*	679
	18.2	Infere	nce from Paired Samples	683
		18.2.1	Constructing paired samples	683
		18.2.2	The basic paired-sample model	684
		18.2.3	Small samples, normal trials*	686
	18.3	Choosi	ing between Separate and Paired Samples	683
		18.3.1	A general rule	687
		18.3.2	Paired sampling using two observations per individual	689
		18.3.3	Pairing samples using observable characteristics*	691
	18.4	Causal	Inference: Treatment Effects*	697
		18.4.1	Randomized controlled experiments and observational studies	697
		18.4.2	Interventions and causal assumptions	699
		18.4.3	Potential outcomes and average treatment effects	700
		18.4.4	A probability model of an observational study	701
		18.4.5	Selection bias in observational studies	702
		18.4.6	Random assignment eliminates selection bias	704
		18.4.7	Controlling for observable confounding variables	705
	18.A	Appendix: Decomposition of Variance in the Separate Sample Model		
	18.B	Appendix: The Distribution of the Pooled Sample Variance		online
	18.E	Exercis	ses	708
9.	Simple	Regre	ssion: Descriptive Statistics 722	
	19.1	The Re	egression Line	724
		19.1.1	A brief review of descriptive statistics	725
		19.1.2	The regression line	726
		19.1.3	Examples, computations, and simulations	726

19.2	Predic	ction and Residuals			
	19.2.1	Predictors, predictions, and residuals	733		
	19.2.2	Best-in-class predictors	734		
	19.2.3	Further characterizations of the regression line	737		
	19.2.4	Deriving the best constant and best linear predictors*	739		
19.3	The C	Conditional Mean Function			
	19.3.1	Best unrestricted prediction	740		
	19.3.2	Best linear prediction of conditional means	746		
19.4	Analys	Analysis of Residuals			
	19.4.1	Sums of squares and variances of residuals for best-in-class predictors	747		
	19.4.2	Relative quality for best-in-class predictors	749		
	19.4.3	Decomposition of variance for regression	75 3		
	19.4.4	Sums of squares revisited	754		
19.5	Pitfalls in Interpreting Regressions				
	19.5.1	Nonlinear relationships	755		
	19.5.2	Regression to the mean	756		
	19.5.3	Correlation and causation	761		
19.6	Three Lines of Best Fit*				
	19.6.1	The reverse regression line	765		
	19.6.2	The neutral line	767		
	19.6.3	The three lines compared	771		
19.A	Appen	Appendix			
	19.A.1	Equivalence of the characterizations of the regression line	774		
	19.A.2	Best linear prediction of conditional means	775		
	19.A.3	Relative quality for best-in-class predictors: Derivation	776		
	19.A.4	Decomposition of variance for regression: Derivation	777		
19.B	Appendix: Characterization of the Neutral Line				
19.E	Exercises				