NANOCOMPOSITE SORBENTS FOR MULTIPLE APPLICATIONS

Yu. I. Aristov
Contents

Preface xv

1. Introductory Remarks 1
 1.1 "Old" and "New" Adsorbents 2
 1.2 Adsorption Technologies 3
 1.3 Harmonization of Adsorbent and Process 4
 1.4 Screening versus Nanotailoring 5
 1.5 Target-Oriented Synthesis of Sorbents 6
 1.6 Nanocomposite Sorbents "Salt in Porous Matrix" 7

2. Description of Adsorption Equilibrium and Dynamics 15
 2.1 Theoretical Adsorption Equations 16
 2.1.1 Langmuir-Type Isotherms 16
 2.1.2 Gibbs Approach 17
 2.2 Empirical Approaches to Adsorption Equilibrium 18
 2.2.1 Polanyi Potential Theory 19
 2.2.2 Trouton's Rule 20
 2.2.3 BET Equation 22
 2.3 Classification of Adsorbents 23
 2.4 Isosteric Heat of Sorption 24
 2.5 Mono-variant versus Bi-variant Systems 24
 2.6 Adsorption Kinetics 26
 2.6.1 Gas Transport Mechanisms 26
 2.6.2 Isothermal Adsorption Kinetics in a Single Grain 27
 2.6.2.1 Surface resistance control 28
 2.6.2.2 Pore diffusion control 28
 2.6.2.3 Linear driving force model 30
 2.6.3 Kinetics of Gas-Solid Reactions 30

3. Optimal Adsorbent: Basic Requirements 35
 3.1 How to Formulate Thermodynamic Requirements? 36
3.2 Particular Adsorption Technologies 36
 3.2.1 Gas Drying 37
 3.2.2 Heat Transformation and Storage 39
 3.2.3 Maintaining Relative Humidity 43
 3.2.4 Shifting Chemical Equilibrium 44
 3.2.5 Extraction of Water from the Atmospheric Air 45

3.3 Dynamic Requirements 48
3.4 Other Requirements 53

4. Basic Synthesis Methods 57
 4.1 Impregnation of the Porous Matrix with an Active Salt 58
 4.1.1 Dry (Incipient Wetness, Pore Volume) Impregnation 58
 4.1.2 Wet (Adsorption, Equilibrium Deposition) Impregnation 61
 4.1.3 Combined Impregnation 62
 4.2 Co-precipitation 62
 4.3 Mechanical Mixing and Thermal Dispersion 64
 4.4 Dry Impregnation: Tools for CSPM Nanotailoring 66
 4.4.1 Active Salt 67
 4.4.1.1 Chemical nature of the salt 67
 4.4.1.2 Crystalline versus amorphous salt phases 68
 4.4.2 Host Matrix 72
 4.4.2.1 Pore size effect 73
 4.4.2.2 Guest-host effect 74
 4.4.3 Synthesis Conditions 74
 4.4.3.1 Solution concentration 74
 4.4.3.2 Solution pH 76
 4.4.3.3 Calcination temperature 77

5. Composite Sorbents of Water Vapor: Effect of a Confined Salt 83
 5.1 Salts and Hydrates in Bulk 83
 5.1.1 Water-Sorbing Ability of Bulk Salts 84
 5.1.2 Mono-variant Equilibrium for Bulk Salts/Hydrates 85
5.2 Various Salts Confined to the Mesoporous Silica Gel KSK
 5.2.1 Effect of Salt's Nature on Water Sorption Equilibrium 87
 5.2.2 Effect of the Salt Content on Water Sorption Equilibrium 88
 5.2.3 Water Sorption Properties of the Salt/Matrix Composites: Non-additivity 89
 5.2.4 Synthesis/Decomposition Hysteresis 91
 5.2.5 Dynamics of Hydrate Synthesis/Decomposition 92

5.3 Mechanisms of Water Sorption on CSPMs 93
 5.3.1 Isobars of Water Sorption on SWS-1L 94
 5.3.2 Isosteric Chart of Water Sorption on SWS-1L 96
 5.3.3 Universal Description of Water Sorption on SWS-1L 97
 5.3.4 Mechanisms of Water Sorption on SWS-1L 99

6. Composite Sorbents of Water Vapor: Effect of a Host Matrix 107
 6.1 “Calcium Chloride–Water” System in Bulk 109
 6.2 CaCl₂ in Matrices with Large Pores 112
 6.2.1 CaCl₂/Vermiculite (SWS-1V) 112
 6.2.2 CaCl₂/MWCNT 116
 6.2.3 CaCl₂/Attapulgite 118
 6.3 CaCl₂ in Matrices with Middle Size Pores 118
 6.3.1 CaCl₂/SBA-15 118
 6.3.2 CaCl₂/Alumina 121
 6.3.3 CaCl₂/Carbon Sibunit 123
 6.4 CaCl₂ in Matrices with Small Pores 124
 6.4.1 CaCl₂/RD Silica KSM 125
 6.4.2 CaCl₂/Activated Carbon 127
 6.4.3 CaCl₂/Zeolite 13X 128
 6.5 Calcium and Lithium Nitrates in the Silica Pores of Various Size 129
 6.6 “Water–Salt” Sorption Equilibrium inside the Matrix Pores 131
 6.6.1 Salt Hydrates in Middle Pores 132
 6.6.2 Salt Solutions in Small Pores 135
7. Composite Sorbents of Methanol 143
 7.1 Common Methanol Adsorbents 144
 7.2 Intent Design of CSPMs for Methanol Sorption 145
 7.2.1 Effect of Active Salt 145
 7.2.2 Effect of Host Matrix 148
 7.2.3 Effect of Synthesis Condition 150
 7.2.4 Effect of Supplementary Salt 151
 7.3 Methanol Sorption Properties of CSPMs 152
 7.3.1 Composites "CaCl₂-Silica Gel" 153
 7.3.2 Composites "Lithium Halides-Silica Gel" 158

8. Composite Sorbents of Ammonia 169
 8.1 CSPMs for Ammonia Sorption 170
 8.1.1 Effect of Active Salt 170
 8.1.2 Effect of Host Matrix 172
 8.1.2.1 CaCl₂-based composites 172
 8.1.2.2 BaCl₂-based composites 175
 8.2 Ammonia Sorption Properties of New CSPMs 177
 8.2.1 Composites "CaCl₂ inside Porous Matrices" 177
 8.2.2 Composite Sorbents "SrCl₂ inside Porous Matrices" 182
 8.2.3 Composite Sorbents "BaCl₂ inside Porous Matrices" 183
 8.2.4 Summary of New Ammonia Sorbents "Salt-Matrix" 185
 8.3 Effect of Supplementary Salt 187
 8.3.1 Composite Sorbents (BaCl₂ + BaBr₂)/Silica 188
 8.3.2 Composite Sorbents (BaCl₂ + BaBr₂)/Vermiculite 189
 8.3.3 Discussion 191

9. Composite Sorbents of Carbon Dioxide 197
 9.1 Effect of the Nature of Matrix 198
 9.1.1 Breakthrough Curves of Carbon Dioxide under Moist Conditions 199
 9.1.2 Composite Sorbent K₂CO₃/Alumina 201
 9.2 Brief Comparison with Common CO₂ Adsorbents 204
 9.3 Conclusion 205
10. Thermal Properties of CSPMs

10.1 Heat Capacity
 10.1.1 Low-Temperature Capacity of CaCl₂/Silica Gel (SWS-1L)
 10.1.2 Heat Capacity of SWS-1L as Function of Water Uptake and Temperature

10.2 Thermal Conductivity
 10.2.1 Thermal Conductivity of CSPMs at Atmospheric Pressure
 10.2.2 Thermal Conductivity of CaCl₂/Alumina Composite
 10.2.3 Thermal Conductivity under Real Conditions of AHT Cycle

11. Melting–Solidification of Salt Solution/Hydrates in Pores

11.1 "CaCl₂–Water" System inside Silica Gel Pores
 11.1.1 Solidification–Melting Phase Diagram
 11.1.2 Effect of Pore Filling
 11.1.3 Supercooling and Vitrification of Salt Solutions in Silica Micropores

11.2 Other Salts and Matrices
 11.2.1 LiBr Solution in Pores of Silica Gel KSK
 11.2.2 Various Hydrates of CaCl₂ in Pores of SBA-15

11.3 Overview

12. Molecular Dynamics of Sorbed Water

12.1 ¹H NMR Spectroscopy
 12.1.1 Water in CaCl₂ Hydrates Confined to Silica Pores of Middle Size
 12.1.2 Water in CaCl₂ Hydrates Confined to Silica Pores of Small Size

12.2 ²H NMR Spectroscopy
 12.2.1 ²H NMR spectra of CaCl₂·nD₂O Hydrates in Bulk and Confined States
 12.2.2 ²H NMR T₁ and T₂ Relaxation Times Analysis

12.3 Neutron Scattering
 12.3.1 QENS Domain
13. Sorption Dynamics: An Individual Composite Grain
13.1 Brief Comparison of Water Sorption Dynamics by Bulk and Confined Calcium Chloride
13.2 Isothermal Dynamics of Water Sorption in CSPMs
13.2.1 Composite CaCl₂/Silica Gel (SWS-1L)
13.2.2 Enhancement of Vapor Transport in Partially Saturated CSPM Pores
13.2.3 Other Composites
13.3 NMR Imaging Study of Water Sorption
13.3.1 Sorption Profiles in Individual CSPM Pellet

14.1 Water Sorption Profiles Measured by NMR Method
14.1.1 Experimental Methodology: Synthesis of Consolidated Layers and NMR Measurements
14.1.2 Effect of Binder Content
14.1.3 Effect of Primary Grain Size
14.1.4 Effect of Salt Content
14.2 Water Sorption Profiles Measured by Gamma Ray Microscopy
14.3 Summary

15. Isobaric Sorption Dynamics: A Temperature Initiation
15.1 The Large Temperature Jump Method
15.2 Sorption Dynamics: Monolayer of Loose CSPM Grains
15.2.1 Exponential Kinetics
15.2.2 Effect of Isobar Shape
15.2.3 Effect of Grain Size
15.2.4 Effect of Salt Content
15.2.5 Effect of Cycle Boundary Temperatures
15.2.6 Effect of Layers Number N
15.3 Summary

16.1 Thermodynamic Harmonization of Adsorbent and Working Conditions of TD AHT Cycle
16.1.1 Various TD AHT Cycles 314
16.1.2 Adsorbent Optimal for TD AHT 317
 16.1.2.1 The first law efficiency 318
 16.1.2.2 The second law efficiency 318
 16.1.2.3 The dynamic efficiency 320

16.2 Adsorptive Cooling 322
 16.2.1 Composite Sorbents of Water 322
 16.2.2 Composite Sorbents of Methanol 327
 16.2.3 Composite Sorbents of Ammonia 329

16.3 Desiccant Cooling 331

16.4 Adsorption Heat Storage 332

17. Adsorptive Transformation of Heat: Pressure-Driven Cycles 345
 17.1 Pressure-Driven Adsorptive Cycles 345
 17.1.1 Thermodynamic Charts of a PD Cycle 346
 17.1.1.1 Isothermal PD cycle 346
 17.1.1.2 Non-isothermal PD cycle 347
 17.1.2 First Law Analysis 347
 17.1.3 Second Law Analysis 348
 17.1.4 Adsorbent Optimal from Dynamic Point of View 349
 17.2 New Cycle "Heat from Cold" 352
 17.2.1 Evaluation of Useful Heat 353
 17.2.2 Evaluation of Threshold Ambient Temperature 354
 17.2.3 Evaluation of Maximal Heating Temperature 355
 17.2.4 First Testing of HeCol Prototype 356
 17.2.4.1 Design of the first HeCol prototype 356
 17.2.4.2 Testing HeCol unit with the selected "salt/matrix" composites 358

 18.1 Climatic Features of Cold Countries 364
 18.2 The VENTIREG Approach: Description and Testing 365
18.2.1 Description of the Approach 365
18.2.2 Adsorbent Selection: Intuition 366
18.2.3 Adsorbent Selection: Experiment 367
18.3 Experimental Testing of VENTIREG Prototypes 371
18.4 Other Aspects 373

19. Maintaining Relative Humidity 379
19.1 Selection of Salt and Matrix 380
 19.1.1 Requirements of Optimal Adsorbent 381
 19.1.2 Effect of the Matrix 383
19.2 ARTIC-1 Testing 385
 19.2.1 Laboratory Tests 385
 19.2.2 Tests in the Museum and the Library 388
 19.2.2.1 Tests in the museum 388
 19.2.2.2 Tests in the library 390
19.3 New CSPM Buffers for RH < 45% 392

20. Shifting Chemical Equilibrium 395
20.1 Introduction to the Problem 395
20.2 Theoretical Considerations 397
 20.2.1 Formulating Requirements to Optimal Adsorbent 397
 20.2.2 Selection of Proper Salts 398
20.3 Experimental Study of Sorbent-Assisted Methanol Synthesis 399
 20.3.1 Composites Preparation 399
 20.3.2 Testing Facilities 399
 20.3.3 Methanol Sorption under Reaction Conditions 400
 20.3.4 Stability of Composites 402

21. Active Heat Insulation 407
21.1 Experimental Details 408
21.2 Heat Front Propagation 409
21.3 Further Considerations 413

Postface 417
Index 421