Contents

About the Cover xiii
Preface to the First Edition xv
Preface to the Second Edition xvii

1 Vector and Tensor Calculus 1
 1.1 Introduction 1
 1.2 Definition of a Vector 1
 1.3 Vector Operations 1
 1.4 Decomposition of a Vector with Respect to a Basis 5
 1.5 Some Mathematical Preliminaries on Second-Order Tensors 10
Exercises 13

2 The Concepts of Force and Moment 16
 2.1 Introduction 16
 2.2 Definition of a Force Vector 16
 2.3 Newton’s Laws 18
 2.4 Vector Operations on the Force Vector 19
 2.5 Force Decomposition 20
 2.6 Drawing Convention 24
 2.7 The Concept of Moment 25
 2.8 Definition of the Moment Vector 26
 2.9 The Two-Dimensional Case 30
 2.10 Drawing Convention for Moments in Three Dimensions 33
Exercises 34

3 Static Equilibrium 39
 3.1 Introduction 39
 3.2 Static Equilibrium Conditions 39
 3.3 Free Body Diagram 42
Exercises 51
4 The Mechanical Behaviour of Fibres
 4.1 Introduction
 4.2 Elastic Fibres in One Dimension
 4.3 A Simple One-Dimensional Model of a Skeletal Muscle
 4.4 Elastic Fibres in Three Dimensions
 4.5 Small Fibre Stretches
Exercises

5 Fibres: Time-Dependent Behaviour
 5.1 Introduction
 5.2 Viscous Behaviour
 5.2.1 Small Stretches: Linearization
 5.3 Linear Visco-Elastic Behaviour
 5.3.1 Superposition and Proportionality
 5.3.2 Generalization for an Arbitrary Load History
 5.3.3 Visco-Elastic Models Based on Springs and Dashpots: Maxwell Model
 5.3.4 Visco-Elastic Models Based on Springs and Dashpots: Kelvin–Voigt Model
 5.4 Harmonic Excitation of Visco-Elastic Materials
 5.4.1 The Storage and the Loss Modulus
 5.4.2 The Complex Modulus
 5.4.3 The Standard Linear Model
 5.5 Appendix: Laplace and Fourier Transforms
Exercises

6 Analysis of a One-Dimensional Continuous Elastic Medium
 6.1 Introduction
 6.2 Equilibrium in a Subsection of a Slender Structure
 6.3 Stress and Strain
 6.4 Elastic Stress–Strain Relation
 6.5 Deformation of an Inhomogeneous Bar
Exercises

7 Biological Materials and Continuum Mechanics
 7.1 Introduction
 7.2 Orientation in Space
 7.3 Mass within the Volume V
 7.4 Scalar Fields
 7.5 Vector Fields
7.6 Rigid Body Rotation 149
Exercises 151

8 Stress in Three-Dimensional Continuous Media 155
8.1 Stress Vector 155
8.2 From Stress to Force 156
8.3 Equilibrium 157
8.4 Stress Tensor 164
8.5 Principal Stresses and Principal Stress Directions 172
8.6 Mohr’s Circles for the Stress State 175
8.7 Hydrostatic Pressure and Deviatoric Stress 176
8.8 Equivalent Stress 177
Exercises 178

9 Motion: Time as an Extra Dimension 183
9.1 Introduction 183
9.2 Geometrical Description of the Material Configuration 183
9.3 Lagrangian and Eulerian Descriptions 185
9.4 The Relation between the Material and Spatial Time Derivatives 188
9.5 The Displacement Vector 190
9.6 The Gradient Operator 192
9.7 Extra Rigid Body Displacement 196
9.8 Fluid Flow 198
Exercises 199

10 Deformation and Rotation, Deformation Rate and Spin 204
10.1 Introduction 204
10.2 A Material Line Segment in the Reference and Current Configurations 204
10.3 The Stretch Ratio and Rotation 210
10.4 Strain Measures and Strain Tensors and Matrices 214
10.5 The Volume Change Factor 219
10.6 Deformation Rate and Rotation Velocity 219
Exercises 222

11 Local Balance of Mass, Momentum and Energy 227
11.1 Introduction 227
11.2 The Local Balance of Mass 227
11.3 The Local Balance of Momentum 228
11.4 The Local Balance of Mechanical Power

11.5 Lagrangian and Eulerian Descriptions of the Balance Equations

Exercises

12 Constitutive Modelling of Solids and Fluids

12.1 Introduction

12.2 Elastic Behaviour at Small Deformations and Rotations

12.3 The Stored Internal Energy

12.4 Elastic Behaviour at Large Deformations and/or Large Rotations

12.4.1 Material Frame Indifference

12.4.2 Strain Energy Function

12.4.3 The Incompressible Neo-Hookean Model

12.4.4 The Incompressible Mooney–Rivlin Model

12.4.5 Compressible Neo-Hookean Elastic Solid

12.5 Constitutive Modelling of Viscous Fluids

12.6 Newtonian Fluids

12.7 Non-Newtonian Fluids

12.8 Diffusion and Filtration

Exercises

13 Solution Strategies for Solid and Fluid Mechanics Problems

13.1 Introduction

13.2 Solution Strategies for Deforming Solids

13.2.1 General Formulation for Solid Mechanics Problems

13.2.2 Geometrical Linearity

13.2.3 Linear Elasticity Theory, Dynamic

13.2.4 Linear Elasticity Theory, Static

13.2.5 Linear Plane Stress Theory, Static

13.2.6 Boundary Conditions

13.3 Solution Strategies for Viscous Fluids

13.3.1 General Equations for Viscous Flow

13.3.2 The Equations for a Newtonian Fluid

13.3.3 Stationary Flow of an Incompressible Newtonian Fluid

13.3.4 Boundary Conditions

13.3.5 Elementary Analytical Solutions

13.4 Diffusion and Filtration

Exercises

14 Solution of the One-Dimensional Diffusion Equation by Means of the Finite Element Method

14.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>The Diffusion Equation</td>
<td>293</td>
</tr>
<tr>
<td>14.3</td>
<td>Method of Weighted Residuals and Weak Form</td>
<td>295</td>
</tr>
<tr>
<td>14.4</td>
<td>Polynomial Interpolation</td>
<td>297</td>
</tr>
<tr>
<td>14.5</td>
<td>Galerkin Approximation</td>
<td>300</td>
</tr>
<tr>
<td>14.6</td>
<td>Solution of the Discrete Set of Equations</td>
<td>307</td>
</tr>
<tr>
<td>14.7</td>
<td>Isoparametric Elements and Numerical Integration</td>
<td>308</td>
</tr>
<tr>
<td>14.8</td>
<td>Basic Structure of a Finite Element Program</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>319</td>
</tr>
<tr>
<td>15</td>
<td>Solution of the One-Dimensional Convection–Diffusion Equation</td>
<td>327</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>327</td>
</tr>
<tr>
<td>15.2</td>
<td>The Convection–Diffusion Equation</td>
<td>327</td>
</tr>
<tr>
<td>15.3</td>
<td>Temporal Discretization</td>
<td>330</td>
</tr>
<tr>
<td>15.4</td>
<td>Spatial Discretization</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>338</td>
</tr>
<tr>
<td>16</td>
<td>Solution of the Three-Dimensional Convection–Diffusion Equation</td>
<td>342</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>342</td>
</tr>
<tr>
<td>16.2</td>
<td>Diffusion Equation</td>
<td>343</td>
</tr>
<tr>
<td>16.3</td>
<td>Divergence Theorem and Integration by Parts</td>
<td>344</td>
</tr>
<tr>
<td>16.4</td>
<td>Weak Form</td>
<td>345</td>
</tr>
<tr>
<td>16.5</td>
<td>Galerkin Discretization</td>
<td>345</td>
</tr>
<tr>
<td>16.6</td>
<td>Convection–Diffusion Equation</td>
<td>348</td>
</tr>
<tr>
<td>16.7</td>
<td>Isoparametric Elements and Numerical Integration</td>
<td>349</td>
</tr>
<tr>
<td>16.8</td>
<td>Example</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>356</td>
</tr>
<tr>
<td>17</td>
<td>Shape Functions and Numerical Integration</td>
<td>363</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>363</td>
</tr>
<tr>
<td>17.2</td>
<td>Isoparametric, Bi-Linear Quadrilateral Element</td>
<td>365</td>
</tr>
<tr>
<td>17.3</td>
<td>Linear Triangular Element</td>
<td>367</td>
</tr>
<tr>
<td>17.4</td>
<td>Lagrangian and Serendipity Elements</td>
<td>370</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Lagrangian Elements</td>
<td>371</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Serendipity Elements</td>
<td>373</td>
</tr>
<tr>
<td>17.5</td>
<td>Numerical Integration</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>377</td>
</tr>
</tbody>
</table>
18 Infinitesimal Strain Elasticity Problems

18.1 Introduction 382
18.2 Linear Elasticity 382
18.3 Weak Formulation 384
18.4 Galerkin Discretization 385
18.5 Solution 391

Exercises 394

References 399

Index 401