Multiphase Catalytic Reactors
Theory, Design, Manufacturing, and Applications

Edited by
Zeynep Ilsen Önsan
Department of Chemical Engineering
Boğaziçi University
Istanbul, Turkey

Ahmet Kerim Avci
Department of Chemical Engineering
Boğaziçi University
Istanbul, Turkey

WILEY
Contents

List of Contributors, x
Preface, xii

Part 1 Principles of catalytic reaction engineering

1 Catalytic reactor types and their industrial significance, 3
 Zeynep Ilseven Önsan and Ahmet Kerim Avcı
 1.1 Introduction, 3
 1.2 Reactors with fixed bed of catalysts, 3
 1.2.1 Packed-bed reactors, 3
 1.2.2 Monolith reactors, 8
 1.2.3 Radial flow reactors, 9
 1.2.4 Trickle-bed reactors, 9
 1.2.5 Short contact time reactors, 10
 1.3 Reactors with moving bed of catalysts, 11
 1.3.1 Fluidized-bed reactors, 11
 1.3.2 Slurry reactors, 13
 1.3.3 Moving-bed reactors, 14
 1.4 Reactors without a catalyst bed, 14
 1.5 Summary, 16
 References, 16

2 Microkinetic analysis of heterogeneous catalytic systems, 17
 Zeynep Ilseven Önsan
 2.1 Heterogeneous catalytic systems, 17
 2.1.1 Chemical and physical characteristics of solid catalysts, 18
 2.1.2 Activity, selectivity, and stability, 21
 2.2 Intrinsic kinetics of heterogeneous reactions, 22
 2.2.1 Kinetic models and mechanisms, 23
 2.2.2 Analysis and correlation of rate data, 27
 2.3 External (interphase) transport processes, 32
 2.3.1 External mass transfer: Isothermal conditions, 33
 2.3.2 External temperature effects, 35
 2.3.3 Nonisothermal conditions: Multiple steady states, 36
 2.3.4 External effectiveness factors, 38
 2.4 Internal (intraparticle) transport processes, 39
 2.4.1 Intraparticle mass and heat transfer, 39
 2.4.2 Mass transfer with chemical reaction: Isothermal effectiveness, 41
 2.4.3 Heat and mass transfer with chemical reaction, 45
 2.4.4 Impact of internal transport limitations on kinetic studies, 47
 2.5 Combination of external and internal transport effects, 48
 2.5.1 Isothermal overall effectiveness, 48
 2.5.2 Nonisothermal conditions, 49
 2.6 Summary, 50
 Nomenclature, 50
 Greek letters, 51
 References, 51

Part 2 Two-phase catalytic reactors

3 Fixed-bed gas–solid catalytic reactors, 55
 João P. Lopes and Alípio E. Rodrigues
 3.1 Introduction and outline, 55
 3.2 Modeling of fixed-bed reactors, 57
 3.2.1 Description of transport–reaction phenomena, 57
 3.2.2 Mathematical model, 59
 3.2.3 Model reduction and selection, 61
 3.3 Averaging over the catalyst particle, 61
 3.3.1 Chemical regime, 64
 3.3.2 Diffusional regime, 64
 3.4 Dominant fluid–solid mass transfer, 66
 3.4.1 Isothermal axial flow bed, 67
 3.4.2 Non-isothermal non-adiabatic axial flow bed, 70
 3.5 Dominant fluid–solid mass and heat transfer, 70
 3.6 Negligible mass and thermal dispersion, 72
 3.7 Conclusions, 73
 Nomenclature, 74
 Greek letters, 75
 References, 75

4 Fluidized-bed catalytic reactors, 80
 John R. Grace
 4.1 Introduction, 80
 4.1.1 Advantages and disadvantages of fluidized-bed reactors, 80
 4.1.2 Preconditions for successful fluidized-bed processes, 81
Part 3 Three-phase catalytic reactors

5 Three-phase fixed-bed reactors, 97
Ion Iliuta and Faigal Larachi

5.1 Introduction, 97

5.2 Hydrodynamic aspects of three-phase fixed-bed reactors, 98
5.2.1 General aspects: Flow regimes, liquid holdup, two-phase pressure drop, and wetting efficiency, 98
5.2.2 Standard two-fluid models for two-phase downflow and upflow in three-phase fixed-bed reactors, 100
5.2.3 Nonequilibrium thermomechanical models for two-phase flow in three-phase fixed-bed reactors, 102

5.3 Mass and heat transfer in three-phase fixed-bed reactors, 104
5.3.1 Gas-liquid mass transfer, 105
5.3.2 Liquid-solid mass transfer, 105
5.3.3 Heat transfer, 106

5.4 Scale-up and scale-down of trickle-bed reactors, 108
5.4.1 Scaling up of trickle-bed reactors, 108
5.4.2 Scaling down of trickle-bed reactors, 109
5.4.3 Salient conclusions, 110

5.5 Trickle-bed reactor/bioreactor modeling, 110
5.5.1 Catalytic hydrodesulfurization and bed clogging in hydrotreating trickle-bed reactors, 110
5.5.2 Biomass accumulation and clogging in trickle-bed bioreactors for phenol biodegradation, 115
5.5.3 Integrated aqueous-phase glycerol reforming and dimethyl ether synthesis into an allothermal dual-bed reactor, 121

Nomenclature, 126
Greek letters, 127
Subscripts, 128
Superscripts, 128
Abbreviations, 128
References, 128

6 Three-phase slurry reactors, 132
Vivek V. Buwa, Shantanu Roy and Vivek V. Ranade

6.1 Introduction, 132

6.2 Reactor design, scale-up methodology, and reactor selection, 134
6.2.1 Practical aspects of reactor design and scale-up, 134
6.2.2 Transport effects at particle level, 139

6.3 Reactor models for design and scale-up, 143
6.3.1 Lower order models, 143
6.3.2 Tank-in-series/mixing cell models, 144

6.4 Estimation of transport and hydrodynamic parameters, 145
6.4.1 Estimation of transport parameters, 145
6.4.2 Estimation of hydrodynamic parameters, 146

6.5 Advanced computational fluid dynamics (CFD)-based models, 147

6.6 Summary and closing remarks, 149
Acknowledgments, 152
Nomenclature, 152
Greek letters, 153
Subscripts, 153
References, 153
7 Bioreactors, 156
Pedro Fernandes and Joaquim M.S. Cabral

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction, 156</td>
<td></td>
</tr>
<tr>
<td>7.2 Basic concepts, configurations, and modes of operation, 156</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Basic concepts, 156</td>
<td></td>
</tr>
<tr>
<td>7.2.2 Reactor configurations and modes of operation, 157</td>
<td></td>
</tr>
<tr>
<td>7.3 Mass balances and reactor equations, 159</td>
<td></td>
</tr>
<tr>
<td>7.3.1 Operation with enzymes, 159</td>
<td></td>
</tr>
<tr>
<td>7.3.2 Operation with living cells, 160</td>
<td></td>
</tr>
<tr>
<td>7.4 Immobilized enzymes and cells, 164</td>
<td></td>
</tr>
<tr>
<td>7.4.1 Mass transfer effects, 164</td>
<td></td>
</tr>
<tr>
<td>7.4.2 Deactivation effects, 166</td>
<td></td>
</tr>
<tr>
<td>7.5 Aeration, 166</td>
<td></td>
</tr>
<tr>
<td>7.6 Mixing, 166</td>
<td></td>
</tr>
<tr>
<td>7.7 Heat transfer, 167</td>
<td></td>
</tr>
<tr>
<td>7.8 Scale-up, 167</td>
<td></td>
</tr>
<tr>
<td>7.9 Bioreactors for animal cell cultures, 167</td>
<td></td>
</tr>
<tr>
<td>7.10 Monitoring and control of bioreactors, 168</td>
<td></td>
</tr>
</tbody>
</table>

Part 4 Structured reactors

8 Monolith reactors, 173
João P. Lopes and Alfrão E. Rodrigues

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction, 173</td>
<td></td>
</tr>
<tr>
<td>8.1.1 Design concepts, 174</td>
<td></td>
</tr>
<tr>
<td>8.1.2 Applications, 178</td>
<td></td>
</tr>
<tr>
<td>8.2 Design of wall-coated monolith channels, 179</td>
<td></td>
</tr>
<tr>
<td>8.2.1 Flow in monolithic channels, 179</td>
<td></td>
</tr>
<tr>
<td>8.2.2 Mass transfer and wall reaction, 182</td>
<td></td>
</tr>
<tr>
<td>8.2.3 Reaction and diffusion in the catalytic washcoat, 190</td>
<td></td>
</tr>
<tr>
<td>8.2.4 Nonisothermal operation, 194</td>
<td></td>
</tr>
<tr>
<td>8.3 Mapping and evaluation of operating regimes, 197</td>
<td></td>
</tr>
<tr>
<td>8.3.1 Diversity in the operation of a monolith reactor, 197</td>
<td></td>
</tr>
<tr>
<td>8.3.2 Definition of operating regimes, 199</td>
<td></td>
</tr>
<tr>
<td>8.3.3 Operating diagrams for linear kinetics, 201</td>
<td></td>
</tr>
<tr>
<td>8.3.4 Influence of nonlinear reaction kinetics, 202</td>
<td></td>
</tr>
<tr>
<td>8.3.5 Performance evaluation, 203</td>
<td></td>
</tr>
<tr>
<td>8.4 Three-phase processes, 204</td>
<td></td>
</tr>
<tr>
<td>8.5 Conclusions, 207</td>
<td></td>
</tr>
</tbody>
</table>

Part 5 Essential tools of reactor modeling and design

10 Experimental methods for the determination of parameters, 233
Rebecca R. Fushimi, John T. Gleaves and Gregory S. Yablonsky

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction, 233</td>
<td></td>
</tr>
<tr>
<td>10.2 Consideration of kinetic objectives, 234</td>
<td></td>
</tr>
<tr>
<td>10.3 Criteria for collecting kinetic data, 234</td>
<td></td>
</tr>
<tr>
<td>10.4 Experimental methods, 234</td>
<td></td>
</tr>
<tr>
<td>10.4.1 Steady-state flow experiments, 235</td>
<td></td>
</tr>
<tr>
<td>10.4.2 Transient flow experiments, 237</td>
<td></td>
</tr>
<tr>
<td>10.4.3 Surface science experiments, 238</td>
<td></td>
</tr>
<tr>
<td>10.5 Microkinetic approach to kinetic analysis, 241</td>
<td></td>
</tr>
<tr>
<td>10.6 TAP approach to kinetic analysis, 241</td>
<td></td>
</tr>
<tr>
<td>10.6.1 TAP experiment design, 242</td>
<td></td>
</tr>
<tr>
<td>10.6.2 TAP experimental results, 244</td>
<td></td>
</tr>
<tr>
<td>10.7 Conclusions, 248</td>
<td></td>
</tr>
</tbody>
</table>

11 Numerical solution techniques, 253
Ahmet Kerim Avci and Seda Keskin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Techniques for the numerical solution of ordinary differential equations, 253</td>
<td></td>
</tr>
<tr>
<td>11.1.1 Explicit techniques, 253</td>
<td></td>
</tr>
<tr>
<td>11.1.2 Implicit techniques, 254</td>
<td></td>
</tr>
<tr>
<td>11.2 Techniques for the numerical solution of partial differential equations, 255</td>
<td></td>
</tr>
</tbody>
</table>
11.3 Computational fluid dynamics techniques, 256
 11.3.1 Methodology of computational fluid dynamics, 256
 11.3.2 Finite element method, 256
 11.3.3 Finite volume method, 258

11.4 Case studies, 259
 11.4.1 Indirect partial oxidation of methane in a catalytic tubular reactor, 259
 11.4.2 Hydrocarbon steam reforming in spatially segregated microchannel reactors, 261

11.5 Summary, 265

Nomenclature, 266
Greek letters, 267
Subscripts/superscripts, 267
References, 267

Part 6 Industrial applications of multiphase reactors
12 Reactor approaches for Fischer–Tropsch synthesis, 271
Gary Jacobs and Burton H. Davis
 12.1 Introduction, 271
 12.2 Reactors to 1950, 272
 12.3 1950–1985 period, 274
 12.4 1985 to present, 276
 12.4.1 Fixed-bed reactors, 276
 12.4.2 Fluidized-bed reactors, 280
 12.4.3 Slurry bubble column reactors, 281
 12.4.4 Structured packings, 286
 12.4.5 Operation at supercritical conditions (SCF), 288
 12.5 The future?, 288

References, 291

13 Hydrotreating of oil fractions, 295
Jorge Ancheyta, Anton Alvarez-Majmutov and Carolina Leyva
 13.1 Introduction, 295
 13.2 The HDT process, 296
 13.2.1 Overview, 296
 13.2.2 Role in petroleum refining, 297
 13.2.3 World outlook and the situation of Mexico, 298
 13.3 Fundamentals of HDT, 300
 13.3.1 Chemistry, 300
 13.3.2 Reaction kinetics, 303
 13.3.3 Thermodynamics, 305
 13.3.4 Catalysts, 306
 13.4 Process aspects of HDT, 307
 13.4.1 Process variables, 307
 13.4.2 Reactors for hydroprocessing, 310
 13.4.3 Catalyst activation in commercial hydrotreaters, 316

13.5 Reactor modeling and simulation, 317
 13.5.1 Process description, 317
 13.5.2 Summary of experiments, 317
 13.5.3 Modeling approach, 319
 13.5.4 Simulation of the bench-scale unit, 320
 13.5.5 Scale-up of bench-unit data, 323
 13.5.6 Simulation of the commercial unit, 324

Nomenclature, 326
Greek letters, 327
Subscripts, 327
Non-SI units, 327
References, 327

14 Catalytic reactors for fuel processing, 330
Gunther Kolb
 14.1 Introduction—The basic reactions of fuel processing, 330
 14.2 Theoretical aspects, advantages, and drawbacks of fixed beds versus monoliths, microreactors, and membrane reactors, 331
 14.3 Reactor design and fabrication, 332
 14.3.1 Fixed-bed reactors, 332
 14.3.2 Monolithic reactors, 332
 14.3.3 Microreactors, 332
 14.3.4 Membrane reactors, 333
 14.4 Reformers, 333
 14.4.1 Fixed-bed reformers, 336
 14.4.2 Monolithic reformers, 337
 14.4.3 Plate heat exchangers and microstructured reformers, 342
 14.4.4 Membrane reformers, 344
 14.5 Water-gas shift reactors, 348
 14.5.1 Monolithic reactors, 348
 14.5.2 Plate heat exchangers and microstructured water-gas shift reactors, 348
 14.5.3 Water-gas shift in membrane reactors, 350
 14.6 Carbon monoxide fine cleanup: Preferential oxidation and selective methanation, 350
 14.6.1 Fixed-bed reactors, 352
 14.6.2 Monolithic reactors, 352
 14.6.3 Plate heat exchangers and microstructured reactors, 353
 14.7 Examples of complete fuel processors, 355
 14.7.1 Monolithic fuel processors, 355
 14.7.2 Plate heat exchanger fuel processors on the meso- and microscale, 357
15 Modeling of the catalytic deoxygenation of fatty acids in a packed bed reactor, 365
Teuvo Kilpiö, Päivi Mäki-Arvela, Tapio Salmi and Dmitry Yu. Murzin
15.1 Introduction, 365
15.2 Experimental data for stearic acid deoxygenation, 366
15.3 Assumptions, 366
15.4 Model equations, 367
15.5 Evaluation of the adsorption parameters, 368
15.6 Particle diffusion study, 369
15.7 Parameter sensitivity studies, 369
15.8 Parameter identification studies, 370
15.9 Studies concerning the deviation from ideal plug flow conditions, 371
15.10 Parameter estimation results, 372
15.11 Scale-up considerations, 372
15.12 Conclusions, 375
Acknowledgments, 375
Nomenclature, 375
Greek letters, 375
References, 376
Index, 377