CONTENTS

Contributors xv
Preface xix

1. Overview of the Visual System 1
 J. Fielding Hejtmanek and John M. Nickerson

Section I
Cornea

2. Overview of the Cornea: Structure, Function, and Development 7
 Allen O. Eghrari, S. Amer Riazuddin, and John D. Gottsch
 1. Structure 8
 2. Function 12
 3. Development 16
 Acknowledgments 20
 References 20

3. Stem Cells in the Cornea 25
 Andrew J. Hertsenberg and James L. Funderburgh
 1. Corneal Epithelial Stem Cells 26
 2. Corneal Stromal Stem Cells 31
 3. Corneal Endothelium Stem/Progenitor Cells 34
 References 36

4. Corneal Development: Different Cells from a Common Progenitor 43
 Peter Y. Lwigale
 1. Embryonic Origin of the Corneal Tissues 44
 2. Development of the Corneal Epithelium 46
 3. Development of the Corneal Endothelium 47
 4. Development of the Corneal Stroma 48
 5. Corneal Innervation 49
 6. Corneal Avascularity During Development 51
 7. Conclusions 53
 Acknowledgments 53
 References 53
5. Corneal Epithelial Wound Healing
Chia-Yang Liu and Winston Whei-Yang Kao

1. Three Stages of Corneal Epithelial Wound Healing 61
2. Events Following Corneal Epithelial Wound 63
3. Role of Basement Membrane to Epithelial Wound Healing 64
4. Role of Integrins During Corneal Wound Healing 64
5. Role of Growth Factors During Corneal Wound Healing 65
6. Role of Cytokine Networks During Corneal Wound Healing 66
7. The Mesenchymal–Epithelial Interactions During Wound Healing 67
8. Conclusions 68
References 69

6. Corneal Dystrophies: Overview and Summary
Daniel Schorderet

1. Introduction 73
References 77

7. Fuchs Corneal Dystrophy
Allen O. Eghrari, S. Amer Riazuddin, and John D. Gottsch

1. Introduction 80
2. Structural Changes in the FCD Cornea 80
3. Genetic Basis of FCD 83
4. Functional Mechanisms in FCD 89
References 93

8. Molecular Pathogenesis of Corneal Dystrophies: Schnyder Dystrophy and Granular Corneal Dystrophy type 2
Eung Kweon Kim, Hun Lee, and Seung-il Choi

1. Pathogenesis 99
2. Conclusion 112
Acknowledgments 112
References 112

Section II
Lens

9. Overview of the Lens
J. Fielding Hejtmancik and Alan Shiels

1. Introduction 119
2. Structure and Cells of the Lens 120
2. The Role of the RPE in Eye Growth Regulation 225
3. The Role of Choroid in Eye Growth Regulation 232
References 235

14. Scleral Mechanisms Underlying Ocular Growth and Myopia 241
Ravi Metlapally and Christine F. Wildsoet
1. Introduction 241
2. Structural and Biomechanical Changes in Myopia 242
3. Molecular Changes in Myopia 243
4. Recent Advances in Molecular Studies 244
5. Potential Therapeutic Approaches 245
References 246

15. Molecular and Biochemical Aspects of the Retina on Refraction 249
Ranjay Chakraborty and Machelle T. Pardue
1. Retina 250
2. Retinal Input Essential for Ocular Growth 251
3. Mouse— A Novel Animal Model to Explore Retinal Mechanism of Refractive Development 252
4. Retinal Neurotransmitters and Refractive Development 253
5. Retinal Neurons/Pathways and Refractive Development in Mutant Mice 255
6. Conclusions 260
References 261

16. Genetics of Refraction and Myopia 269
Qingjiong Zhang
1. Genetic Contribution to Refraction 269
2. Molecular Genetics of Hyperopia 270
3. Molecular Genetics of Myopia 271
4. Human Variants in Genes for Experimental Myopia 274
5. Summary 275
References 275

Section IV
Ocular Immunity

17. Molecular Genetic Advances in Uveitis 283
Shengping Hou, Aize Kijlstra, and Peizeng Yang
1. Introduction 284
2. Molecular Genetic Studies on the Genes Involved in the Innate Immune System and Their Relation to Uveitis 286
3. Molecular Genetics Studies on the Genes Involved in the Adaptive Immune System and Uveitis 289
4. The Role of CNVs in Uveitis 292
5. Summary 293
References 293

Section V
Aqueous Flow and Intraocular Pressure

18. Intraocular Pressure and the Mechanisms Involved in Resistance of the Aqueous Humor Flow in the Trabecular Meshwork Outflow Pathways 301
Ernst R. Tamm, Barbara M. Braunger, and Rudolf Fuchshofer

1. Intraocular Pressure and Aqueous Humor Outflow 302
2. Trabecular Meshwork 303
3. Schlemm’s Canal 304
4. Outflow Resistance 305
5. Contractile Mechanisms in the Trabecular Outflow Pathways 307
6. Resistance of the Trabecular Outflow Pathways in Primary Open-Angle Glaucoma 309
References 311

19. Glaucoma Genes and Mechanisms 315
Janey L. Wiggs

1. Introduction 316
2. Endoplasmic Reticulum Stress Response 318
3. Extracellular Matrix, Cell Junctions, and Cell Adhesion 322
4. TGF Beta Signaling 324
5. Tumor Necrosis Factor-Alpha Signaling 326
6. Regulation of Autophagy 326
7. Lipid Metabolism 327
8. Endothelial Nitric Oxide Synthetase Signaling and Caveolae 327
9. Fructose and Mannose Metabolism 328
10. Regulation of Cell Division 328
11. Regulation of Ocular Development 330
12. Cerebrospinal Fluid Pressure 332
13. Summary 333
References 333
20. Neuroinflammation in Glaucoma and Optic Nerve Damage

Caitlin E. Mac Nair and Robert W. Nickells

1. Introduction 344
2. Immune Privilege and Neuroglia 345
3. Glaucomatous Neurodegeneration Is Compartmentalized 349
4. Immune Response in the Optic Nerve and ONH 350
5. Neuroinflammation in the Retina 354
6. Conclusions 357
References 357

21. What Animal Models Can Tell Us About Glaucoma

Felix L. Struebing and Eldon E. Geisert

1. Introduction 365
2. Animals in Glaucoma Research 366
3. Rodent Models 367
4. Models Induced by Genetic Manipulation 370
5. Mechanisms Underlying RGC Death in Glaucoma 371
6. Innate Immune Network in Glaucoma 372
Acknowledgments 375
References 376

Section VI
Retina

22. Introduction to the Retina

Hans E. Grossniklaus, Eldon E. Geisert, and John M. Nickerson

1. Introduction 383
2. The Fundus 384
3. The Structure of the Retina in Cross-Section 386
4. The Blood Supply of the Retina 387
5. En Face Imaging and Patterns in the Retina 387
6. The Visual Transduction Cascade 390
7. Outer Segment Disk Genesis and Shedding 391
8. Retinal Circuitry 393
9. Nobel Prizes Based on Understanding the Retina 394
Acknowledgments 395
References 396
23. Development of the Vertebrate Eye and Retina 397
Deborah L. Stenkamp

1. Introduction 397
2. Overview of Eye Morphogenesis 400
3. Principles of Retinal Neurogenesis 400
4. Retinal Neuronal Diversity: Regulation by Intrinsic and Extrinsic Factors 402
5. Persistent Retinal Neurogenesis and Regeneration 406
6. Summary 408
Acknowledgments 408
References 408

24. Insights into the Molecular Properties of ABCA4 and Its Role in the Visual Cycle and Stargardt Disease 415
Robert S. Molday

1. Introduction 416
2. ABC Transporters 417
3. ABCA Subfamily 417
4. ABCA4 419
5. Role of ABCA4 in the Visual Cycle 423
6. Loss of ABCA4 Function and Stargardt Disease 426
7. Conclusions 427
Acknowledgments 427
References 427

Charles B. Wright, T. Michael Redmond, and John M. Nickerson

1. Introduction 434
2. History of Visual Cycle Research 434
3. RPE65: Structure, Function, and Biochemical Mechanism 437
4. RPE65 and Its Known Disease Associations 442
5. Conclusions 444
References 444

26. A2E and Lipofuscin 449
Rosalie K. Crouch, Yiannis Koutalos, Masahiro Kono, Kevin Schey, and Zsolt Ablonczy

1. Introduction 450
2. Lipofuscin 451
3. A2E and Other Bis-Retinoids 452
5. A2E and Lipofuscin in Mice 457
6. A2E and Lipofuscin in Humans 457
7. Future Directions 460
Acknowledgments 460
References 461

27. Cone Health and Retinoids 465
Masahiro Kono

1. Introduction 466
2. Cone Pigments and Opsins 467
3. Two Visual Cycles for Cones 468
4. Leber Congenital Amaurosis 469
5. Mouse Models for LCA 469
6. Role of Retinoids in Maintaining Healthy Cones 471
Acknowledgments 473
References 473

28. Retinoid Processing in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cultures 477
Mark A. Fields, Hannah E. Bowrey, Jie Gong, Zsolt Ablonczy, and Lucian V. Del Priore

1. Introduction 478
2. Stem Cell Definitions and Types 478
3. Induced Pluripotent Stem Cells 479
4. Retinal Pigment Epithelium, the Visual Cycle, and Age-Related Macular Degeneration 480
5. Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium 483
6. Retinoid Processing in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium 485
7. Future Directions 486
Acknowledgments 487
References 487

29. Potential Role of Exercise in Retinal Health 491
Machelle T. Pardue, Micah A. Chrenek, Robin H. Schmidt, John M. Nickerson, and Jeffrey H. Boatright

1. Exercise Is Neuroprotective in Humans and Animals 492
2. Exercise May Be Beneficial to Retina and Vision 492
3. Exercise Protects Retina and Vision in Animal Models of Retinal Disease 493
4. Mechanisms That May Mediate Effects of Exercise on Retina and Vision 493
5. BDNF Mediates Effects of Exercise in Human and Animal Models 494
6. The Possible Role of BDNF in Exercise and Retinal Neuroprotection 495
7. From Muscle to Retina: Systemic and Local Pathways? 497
Acknowledgments 497
References 498

30. The Biology of Retinoblastoma 503
Pia R. Mendoza and Hans E. Grossniklaus
1. Introduction 503
2. Genetics and Molecular Biology of Retinoblastoma 504
3. Clinical Features of Retinoblastoma 509
4. Pathology of Retinoblastoma 510
5. Management of Retinoblastoma 512
References 514

31. The 11-cis Retinal Origins of Lipofuscin in the Retina (online chapter) 517
Leopold Adler IV, Nicholas P. Boyer, Chunhe Chen, Zsolt Ablonczy, Rosalie K. Crouch, and Yiannis Koutalos

Index 519