Numerical Simulation and Modelling of Electronic and Biochemical Systems

Jaijeet Roychowdhury

University of California
Berkeley, CA 94720
USA
jr@eecs.berkeley.edu

now
the essence of knowledge
Boston – Delft
Contents

1 Introduction 1
 1.1 Trends in Numerical Simulation and Applications 1
 1.2 Scope and Organization of This Monograph 3
 1.3 Website for MATLAB Scripts and Updates 4
 1.4 Acknowledgments 4

2 Circuit Element Equations ("Device Models") 7
 2.1 Review: Linearity, Time-invariance, Memorylessness, Causality 7
 2.2 Linear Resistor 9
 2.3 Linear Capacitor 10
 2.4 Linear Inductor 11
 2.5 Independent Voltage and Current Sources 13
 2.6 Linear Controlled Sources 14
 2.7 Generic Two-Terminal Nonlinear Resistor 15
 2.8 Nonlinear Capacitors and Inductors 15
 2.9 Diode 15
 2.10 Ebers-Moll Bipolar Junction Transistor (BJT) 16
 2.11 Schichman–Hodges MOSFET 17
 2.12 Continuity, Differentiability and Smoothness 19
3 Circuits as Nonlinear Differential–Algebraic Equations

3.1 Writing Circuit Equations: A Simple Example
3.2 Kirchoff’s Current and Voltage Laws
3.3 Sparse Tableau Formulation
3.4 Nodal Formulation
3.5 Modified Nodal Formulation
3.6 Derivative (“Jacobian”) Matrices and Device “Stamps”

4 Quiescent Steady-State Analysis via Newton–Raphson

4.1 Solving Nonlinear Equations: The Newton–Raphson Algorithm
4.2 Linear Solution: Importance of Jacobian Sparsity
4.3 Quadratic Local Convergence of Newton–Raphson
4.4 Convergence Heuristics: Device Initialization and Limiting

5 Transient Simulation

5.1 Existence and Uniqueness of ODE Solutions
5.2 Basic Notions: Discretization and Time-Stepping
5.3 Numerical Integration by Piecewise Polynomial Approximation
5.4 Accuracy and Numerical Stability
5.5 Adapting ODE Methods to Solve DAEs

6 Modelling Biochemical Reaction Kinetics Deterministically

6.1 Unimolecular Reactions: $A \Rightarrow B$
6.2 Bimolecular Reactions: $A + B \Rightarrow C$
6.3 Nontrivial Stoichiometries: $s_A A + s_B B \Leftrightarrow s_C C + s_D D$
6.4 Reaction Chains: $A + B \Rightarrow C, C + D \Rightarrow E + A$
6.5 Identifying Conservation Laws Numerically Using SVDs 80
6.6 Enzyme-catalyzed Reactions: Michaelis-Menten Kinetics 83

7 Sinusoidal Steady States of LTI Systems 87
7.1 Linearizing DAEs Around a Quiescent Steady State 87
7.2 Computing Sinusoidal Responses in the Frequency Domain 89
7.3 Frequency Sweeps of Transfer Functions 91
7.4 Transfer Function Eigenanalysis of LTI DAEs 91

8 Direct and Adjoint Methods for Sensitivities and Noise 95
8.1 QSS (DC) Sensitivity Analysis 95
8.2 Stationary Noise Analysis 97

9 Nonlinear Periodic Steady State and Multitime Analyses 105
9.1 Methods for Nonlinear Periodic Steady States 106
9.2 Multitime Partial Differential Equations (MPDEs) 113
9.3 Multitime Analysis of Autonomous Systems 129
9.4 Generalized MPDE Formulations 141

10 Model Order Reduction of Linear, Nonlinear and Oscillatory Systems 145
10.1 Overview: LTI, LTV and Nonlinear MOR Techniques 145
10.2 Oscillator Phase Macromodelling and Applications 163
10.3 Using Oscillator Phase Macromodels for PLL Analysis 174
10.4 Biochemical and Nanoelectronic Applications of Nonlinear Oscillator Phase Macromodels 189

References 203