FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND THEIR NUMERICAL SOLUTIONS

Boling Guo
Institute of Applied Physics and Computational Mathematics, China

Xueke Pu
Chongqing University, China

Fenghui Huang
South China University of Technology, China
Contents

Preface ... v

1 Physics Background ... 1
 1.1 Origin of the fractional derivative .. 1
 1.2 Anomalous diffusion and fractional advection-diffusion 5
 1.2.1 The random walk and fractional equations 6
 1.2.2 Fractional advection-diffusion equation 10
 1.2.3 Fractional Fokker-Planck equation 11
 1.2.4 Fractional Klein-Framers equation 15
 1.3 Fractional quasi-geostrophic equation 16
 1.4 Fractional nonlinear Schrödinger equation 20
 1.5 Fractional Ginzburg-Landau equation 23
 1.6 Fractional Landau-Lifshitz equation 27
 1.7 Some applications of fractional differential equations 29

2 Fractional Calculus and Fractional Differential Equations 34
 2.1 Fractional integrals and derivatives 34
 2.1.1 Riemann-Liouville fractional integrals 34
 2.1.2 R-L fractional derivatives 42
 2.1.3 Laplace transforms of R-L fractional derivatives 48
 2.1.4 Caputo's definitions of fractional derivatives 50
 2.1.5 Weyl's definition for fractional derivatives 52
 2.2 Fractional Laplacian ... 56
 2.2.1 Definition and properties 56
 2.2.2 Pseudo-differential operator 63
 2.2.3 Riesz potential and Bessel potential 69
 2.2.4 Fractional Sobolev space 71
 2.2.5 Commutator estimates ... 76
 2.3 An existence theorem ... 82
 2.4 Distributed order differential equations 89
 2.4.1 Distributed order diffusion-wave equation 91
 2.4.2 Initial boundary value problem of distributed order 94
Contents

2.5 Appendix A: the Fourier transform .. 96
2.6 Appendix B: Laplace transform .. 104
2.7 Appendix C: Mittag-Leffler function 106
 2.7.1 Gamma function and Beta function 106
 2.7.2 Mittag-Leffler function 107

3 Fractional Partial Differential Equations 109
 3.1 Fractional diffusion equation 109
 3.2 Fractional nonlinear Schrödinger equation 113
 3.2.1 Space fractional nonlinear Schrödinger equation 113
 3.2.2 Time fractional nonlinear Schrödinger equation 125
 3.2.3 Global well-posedness of the one-dimensional fractional nonlinear Schrödinger equation 129
 3.3 Fractional Ginzburg-Landau equation 138
 3.3.1 Existence of weak solutions 138
 3.3.2 Global existence of strong solutions 143
 3.3.3 Existence of attractors 150
 3.4 Fractional Landau-Lifshitz equation 155
 3.4.1 Vanishing viscosity method 155
 3.4.2 Ginzburg-Landau approximation and asymptotic limit ... 162
 3.4.3 Higher dimensional case—Galerkin approximation 170
 3.4.4 Local well-posedness 185
 3.5 Fractional QG equations 199
 3.5.1 Existence and uniqueness of solutions 200
 3.5.2 Inviscid limit 209
 3.5.3 Decay and approximation 213
 3.5.4 Existence of attractors 221
 3.6 Fractional Boussinesq approximation 229
 3.7 Boundary value problems 247

4 Numerical Approximations in Fractional Calculus 257
 4.1 Fundamentals of fractional calculus 258
 4.2 G-Algorithms for Riemann-Liouville fractional derivative 261
 4.3 D-Algorithm for Riemann-Liouville fractional derivative 266
 4.4 R-Algorithms for Riemann-Liouville fractional integral 269
 4.5 L-Algorithms for fractional derivative 272
4.6 General form of fractional difference quotient approximations

4.7 Extensions of integer-Order numerical differentiation and integration

4.7.1 Extensions of backward and central difference quotient schemes

4.7.2 Extension of interpolation-type integration quadrature formulas

4.7.3 Extension of linear multi-step method: Lubich fractional linear multi-step method

4.8 Applications of other approximation techniques

4.8.1 Approximations of fractional integral and derivative of periodic function using fourier expansion

4.8.2 Short memory principle

5 Numerical Methods for the Fractional Ordinary Differential Equations

5.1 Solution of fractional linear differential equation

5.2 Solution of the general fractional differential equations

5.2.1 Direct method

5.2.2 Indirect method

6 Numerical Methods for Fractional Partial Differential Equations

6.1 Space fractional advection-diffusion equation

6.2 Time fractional partial differential equation

6.2.1 Finite difference schemes

6.2.2 Stability analysis: Fourier-von Neumann method

6.2.3 Error analysis

6.3 Time-space fractional partial differential equation

6.3.1 Finite difference schemes

6.3.2 Stability and convergence analysis

6.4 Numerical methods for non-linear fractional partial differential equations

6.4.1 Adomina decomposition method

6.4.2 Variational iteration method

Bibliography