Applications of Dispersive Optical Spectroscopy Systems

Wilfried Neumann
Table of Contents

Preface
Glossary of Symbols and Notation

1 Transmission, Absorption, and Reflection Measurements 1

1.0 Introduction 1

1.0.1 Principles 1
1.0.2 Absorption measurements 2
1.0.3 Reflection measurement 3

1.1 Techniques for Static Absorption Measurements 4

1.1.1 Technical realization of an optimal spectrophotometer for absorption and reflection 5
1.1.2 Detection range at the wavelength and signal scale 6
1.1.3 Data-acquisition methods 6
1.1.4 Light path and spectral disturbance 8
1.1.5 The optimal spectrophotometer 9
1.1.6 A standard high-performance spectrophotometer 10
1.1.7 Spectrophotometer with parallel wavelength detection 11
1.1.8 Detection range on the wavelength and signal scale with parallel wavelength detection, and single-beam spectrophotometers 13
1.1.9 Proposal for a universal sample chamber for dual-beam spectrophotometry 15
1.1.10 Calibration and the definition of stray light 16

1.2 Dynamic Absorption Measurements 16

1.2.1 Typical experiments 16

1.3 Special Absorption Techniques 21

1.3.1 Atomic absorption spectroscopy 21
1.3.1.1 The principle of an atomic absorption spectrometer 22
1.3.1.2 Atomization 25
1.3.1.3 Applicable elements for AAS 26
1.3.1.4 Compensation techniques without broadband lamps 26
Table of Contents

1.3.2 Polarized transmission: CD and ORD
 1.3.2.1 The origin of circularly polarized light, with alternating circulation 28
 1.3.2.2 Set up and functionality of a CD spectrometer with ORD option 30
 1.3.2.3 Instrumental considerations 32

1.3.3 Spectrometers for scattered transmission
 1.3.3.1 Absorption spectrophotometer with an extra-large detector 33
 1.3.3.2 Dual-beam fiber optic spectrophotometer for kinetics and scattering 34
 1.3.3.3 Absorption spectrophotometer with an integrating sphere 36

1.3.4 Photoacoustic (optoacoustic) spectroscopy
 1.3.4.1 Basics 37
 1.3.4.2 Parameters that affect the PAS signal 37
 1.3.4.3 Setup of a PAS system 38
 1.3.4.4 Preferred PAS/OAS applications and referencing 40

References 40

2 Ellipsometry
 2.0 Introduction 43
 2.1 Elements of Spectroscopic Ellipsometers
 2.1.1 The Stokes parameters 45
 2.1.2 Research-grade spectroscopic ellipsometers 46
 2.1.2.1 Spectroscopic ellipsometer with a rotating polarizer 46
 2.1.2.2 Spectroscopic ellipsometer with rotating analyzer 47
 2.2 Applications of Spectroscopic Ellipsometry 47
 2.2.1 Building blocks of SE for research, material analysis, and product definition 47
 2.3 Basic Equations of RPSE Parameters Presented by Software and in Literature 51
 2.4 Comparison between SE and Single-Wavelength Ellipsometry 52
 2.5 Production-Oriented SE
 2.5.1 SE with parallel detection 52
 2.5.2 in situ SE 53
 2.5.3 SE with a reduced spot size 54
 2.6 Data Origin and Reduction 54
 2.7 Limits of the SE Method
 2.7.1 Measurement of P, the degree of polarization 54
 2.8 SE Examples 55
 2.9 Extensions of the Instrumentation for Spectroscopic Ellipsometry
 2.9.1 SE system for the deep UV 57
 2.9.2 SE system for the IR range 58
Emission Spectroscopy

3 Emission Spectroscopy

3.0 Introduction
- 3.0.1 Instrumental technology for the acquisition of emission spectra
- 3.0.2 Typical emission spectra
- 3.0.3 Setup based on 2D Echelle spectrometers
 - 3.0.3.1 Stationary 2D Echelle spectrometer
 - 3.0.3.2 2D Echelle spectrometer with a small detector surface
 - 3.0.3.3 MCP-2D-Echelle spectrometer
- 3.0.4 Scanning (Echelle) spectrometers

3.1 Atomic Emission Spectroscopy
- 3.1.1 Scanning AES
- 3.1.2 Parallel-detecting AES

3.2 Cathodoluminescence spectroscopy

3.3 Spectroscopy at Inductively Coupled Plasma
- 3.3.1 ICP examples

3.4 Spark Optical Emission Spectroscopy

3.5 Laser Ablation

3.6 Plasma Etching

3.7 Solar and Stellar Emission

3.8 Emission Measurements at Explosions and Flames

Luminescence

4 Luminescence

4.0 Introduction
- 4.0.1 Parameters of luminescence measurements
- 4.0.2 Requirements of luminescence measurements

4.1 Setup of a Static Luminescence Spectrophotometer
- 4.1.1 Instrumental considerations
- 4.1.2 Light path and spectral disturbance
- 4.1.3 Details of a static photoluminescence spectrophotometer
 - 4.1.3.1 The excitation arm
 - 4.1.3.2 Creation of the reference signal
 - 4.1.3.3 Justification of a double monochromator in the excitation branch
 - 4.1.3.4 Illumination of the sample
 - 4.1.3.5 The emission light pass
 - 4.1.3.6 Spectral dispersion and processing of the luminescent light
4.1.4 Measurement methods of static luminescence spectroscopy 96
 4.1.4.1 Emission scan 96
 4.1.4.2 Excitation scan 96
 4.1.4.3 Fluorescence polarization 96
 4.1.4.4 Acquisition of the total fluorescence 97
 4.1.4.5 Fluorescence resonance energy transfer (FRET),
 also called the Förster energy transfer 99
 4.1.4.6 Two-photon excitation/upward luminescence 100
 4.1.4.7 Modulated excitation for NIR/IR, and
 phosphorescence 101
 4.1.4.8 Laser excitation 102
 4.1.4.9 Luminescence microscopy 102
 4.1.4.10 Confocal microscopy and fluorescence correlation
 spectroscopy 103
 4.1.4.11 Remote luminescence 103

4.1.5 Summary of the requirements for a static luminescence
 spectrophotometer 105

4.1.6 Calibration, comparison of systems, and stray light tests 106
 4.1.6.1 Calibration 106
 4.1.6.2 Comparison of luminescence systems and
 performance test 106
 4.1.6.3 Weakness of the Raman-on-water method 107
 4.1.6.4 Stray light test of the excitation arm 110
 4.1.6.5 Stray light test of the emission arm 110

4.2 Dynamic Luminescence/Lifetime Measurements 111

4.2.1 Available instrumentation 114
 4.2.1.1 Analysis of the change in the state of
 polarization 114
 4.2.1.2 Pulsed methods 114
 4.2.1.3 Synchronized integration, also called boxcar
 integration or pulse/sample analysis 116
 4.2.1.4 Single photon counting: TCSPC 118

4.2.2 Continuous methods 119
 4.2.2.1 Phase/modulation analysis 119
 4.2.2.2 Setup of a phase/modulation system 122
 4.2.2.3 Multiharmonic Fourier transform systems 124

4.2.3 Methods using parallel wavelength detection 126
 4.2.3.1 Synchronized CCD gating 126
 4.2.3.2 Modulated MCP/CCD analysis 127

4.2.4 Pulsed excitation and streak camera detection 128
 4.2.4.1 Description of a streak camera lifetime system 128

References 130
5 Radiometry

5.0 Introduction 131

5.1 Radiometric Parameters 132

5.1.1 Definition and measurement of the spectral radiant power 133

5.1.1.1 The sphere 134

5.1.1.2 Spectrometer 135

5.1.1.3 Detectors 136

5.1.1.4 Coupling 136

5.1.1.5 Data collection, interpretation, and processing, exemplary for a radiant flux measurement 139

5.1.1.6 System limits 140

5.1.2 Measurement of the spectral irradiance E and the radiance L 142

5.1.2.1 Fixed mounting of a sphere and spectrometer 143

5.1.2.2 Definition of a sphere to work with a pre-defined Ω or steradian 144

5.1.2.3 Interpretation 145

5.1.2.4 Acquisition of radiation from pulsed sources 145

5.1.3 Radiometry with parallel-detecting spectrographs 146

5.2 Radiometric Sample Illumination 146

5.2.1 General requirements, independent from the application 146

5.2.1.1 Bandwidth: the spectral bandwidth 146

5.2.1.2 Bandwidth: the uniformity of the wavelength over the slitwidth 147

5.2.1.3 Wavelength (wavenumber, photon energy, frequency): accuracy of the wavelength 147

5.2.1.4 Wavelength range: the useful range 148

5.2.1.5 Illuminated area: size and shape 148

5.2.1.6 Irradiance E at the illuminated surface 148

5.2.1.7 Uniformity of irradiance E over the illuminated area 149

5.2.1.8 Stray light/false light, tolerated by the experiment 149

5.2.1.9 Polarization 150

5.2.1.10 Spectral illumination with a reference channel for calibrated flux of radiation 151

5.3 Analysis of Spectral and Power Spatial Distribution Provided by the System 153

5.3.1 Reference analysis by a single point detector 153

5.3.2 Analysis of spectral and power distribution over the illuminated field 153

5.4 Calibration of Radiometric Spectral Data 154

5.4.1 Description of a realized system and its calibration with a certified source, enabling calibrated source analysis 154
6 Raman and Brillouin Spectroscopy 159

6.0 Introduction to Scattering Spectroscopy 159
6.1 The Principle of Raman Spectroscopy Measurements 160
6.2 Requirements for a Raman Spectrometer 161
 6.2.1 Spectrometer options 162
 6.2.2 Summary of wavelength dependence 163
6.3 Beam Travel and Spectral Interferences 165
6.4 Exemplary Raman and Brillouin Spectra 165
6.5 Design or Selection of Raman Spectrometers 167
 6.5.1 The wavelength of excitation 167
 6.5.2 Applicable distance of Raman signals 168
 6.5.2.1 Single-stage spectrometer with notch filter 168
 6.5.2.2 Double spectrometers versus single-stage systems 170
 6.5.2.3 Stray light consideration 173
 6.5.2.4 Spectrometers for measurements extremely close to the Rayleigh line, Brillouin spectrometers 174
 6.5.2.5 Triple spectrometers, the work horses of Raman and Brillouin spectroscopy 178
 6.5.2.6 Estimation on the impact of Rayleigh scattering in different systems 183
6.6 Special Raman Methods 183
 6.6.1 Raman versus fluorescence 183
 6.6.2 NIR Raman 184
 6.6.3 UV Raman 184
 6.6.4 Raman microscopy 185
 6.6.4.1 Confocal Raman microscopy 185
 6.6.5 Resonance Raman (RR) 187
 6.6.6 Surface-enhanced Raman scattering (SERS) 187
 6.6.7 Coherent anti-Stokes Raman spectroscopy (CARS) 187
References 188

7 Spectrometry of Laser Light 189

7.0 Introduction 189
 7.0.1 Near field and far field 190
 7.0.2 Considerations 190
7.1 Measurements in the UV–Vis–NIR Range 191
 7.1.1 Spectral analysis of lasers with single or rather distant lines, and small beam cross section (like He-Ne, argon ion, or other gas lasers) 191
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1.1 Required working range and bandwidth/resolution of the spectrometer</td>
<td>192</td>
</tr>
<tr>
<td>7.1.1.2 High-resolution, single-stage spectrometer limits</td>
<td>193</td>
</tr>
<tr>
<td>7.1.1.3 Ultra-high-resolution spectrometers</td>
<td>193</td>
</tr>
<tr>
<td>7.2 Fabry–Pérot Interferometer</td>
<td>193</td>
</tr>
<tr>
<td>7.3 Spectral Measurements of Large Laser Images</td>
<td>195</td>
</tr>
<tr>
<td>7.4 Imaging Analysis</td>
<td>195</td>
</tr>
<tr>
<td>7.5 Hyperspectral Analysis</td>
<td>196</td>
</tr>
<tr>
<td>7.6 Commercial Analysis Systems</td>
<td>196</td>
</tr>
<tr>
<td>References</td>
<td>196</td>
</tr>
</tbody>
</table>

Index 197