Theory and Practice of Modern Antenna Range Measurements

Clive Parini, Stuart Gregson, John McCormick and Daniël Janse van Rensburg

The Institution of Engineering and Technology
Contents

Preface ... xiii
Author biographies xvii
List of abbreviations xix

1 Introduction 1
1.1 The phenomena of antenna coupling 1
1.2 Characterisation via a measurement process 3
1.3 Measurable properties of antennas 6
 1.3.1 Antenna gain and directivity 9
 1.3.2 Antenna cross-section 11
 1.3.3 Free-space radiation pattern 13
 1.3.4 Polarisation 18
 1.3.5 The far-field 19
 1.3.6 The phase in the measurement 21
 1.3.7 Reciprocity 22
 1.3.8 Measurement limitations 23
1.4 The content of this text 23
References .. 26

2 EM theory and the mechanism behind antenna coupling 29
2.1 Maxwell’s classical electromagnetic field theory 29
2.2 Electric charge and EM fields 30
2.3 Power flux in an EM field 34
2.4 Maxwell’s equations 38
2.5 The electric and magnetic potentials 42
 2.5.1 Static potentials 42
 2.5.2 Retarded potentials 43
2.6 The inapplicability of source excitation as a measurement methodology 53
2.7 Field equivalence principle 53
2.8 Characterising vector electromagnetic fields 56
2.9 Reflection and scattering of electromagnetic fields by extended objects 58
2.10 Antenna port definition 59
2.11 Summary 61
References .. 62
3 Antenna measurements

3.1 Antenna measurements and alignment 63
3.2 Rotation methodologies 64
3.3 Far-field ranges 66
3.4 Free-space conditions 67
3.5 Alternatives to far-field ranges 77
 3.5.1 The compact antenna test range 77
3.6 Indirect measurements 80
 3.6.1 Spherical near-field ranges 81
 3.6.2 Planar near-field measurements 83
 3.6.3 Cylindrical near-field measurements 83
3.7 Other geometries for scanning measurements 85
3.8 Attributes common to all near-field measurement techniques 86
 3.8.1 The scanning probe 86
 3.8.2 Generic near-field antenna measurement process 87
3.9 Summary 89

References 90

4 Compact range measurements

4.1 Introduction 93
4.2 Collimation of electromagnetic fields 96
 4.2.1 Reflector edge diffraction 99
 4.2.2 Feed spillover 109
 4.2.3 Lenses as collimators 110
 4.2.4 Hologram CATRs 111
 4.2.5 Reflector surface errors and panel gaps 113
 4.2.6 Time-gating and the absorber-less chamber 117
4.3 Types of ranges and their design issues 121
 4.3.1 Single offset reflector CATR 121
 4.3.2 Dual cylindrical reflector CATR 122
 4.3.3 Dual shaped reflector CATR 122
 4.3.4 Tri-reflector CATR 122
 4.3.5 Hologram CATR 124
 4.3.6 Lens CATR 125
4.4 Quiet zones and performance evaluation 125
 4.4.1 How does a CATR actually work? 125
 4.4.2 Measurement of the quiet zone by field probing 135
 4.4.3 Phase-less quiet zone scanning 137
 4.4.4 Quiet zone evaluation using RCS of a known target 138
 4.4.5 Improving measured CATR patterns 140
 4.4.6 Feed scanning for static AUT measurements 146
4.5 Radiation pattern and power parameter measurement 148
 4.5.1 Radiation pattern measurement 148
 4.5.2 Power parameter measurement 150
4.6 Radar cross-section measurements 154
 4.6.1 RCS measurement in a CATR 154
 4.6.2 Sources of RCS measurement error in a CATR 158
 4.6.3 RCS model towers 160
 4.6.4 Time-gating for RCS 160
 4.6.5 Target imaging 162
References 164

5 Planar near-field antenna measurements 171
 5.1 Introduction 171
 5.2 Near-field measurement facility 171
 5.2.1 RF sub-system 172
 5.2.2 Robotics positioner system 175
 5.2.3 Near-field probe 177
 5.3 Limitations in the accuracy of the near-field measurement data 177
 5.3.1 Mechanically based limitations 177
 5.3.2 RF system limitations 178
 5.4 Solution of Maxwell’s equations in Cartesian coordinates 180
 5.4.1 Plane wave spectrum 180
 5.5 Probe pattern compensation 182
 5.5.1 Effect of the probe pattern on far-field data 184
 5.5.2 Scanning probe characteristics 186
 5.6 Plane-polar near-field antenna measurements 187
 5.6.1 Application of spectral methods to plane-polar antenna
 measurements 187
 5.6.2 Conventional and alternate plane acquisition types 196
 5.6.3 Plane-polar alignment 200
 5.7 Summary 207
References 208

6 Cylindrical near-field antenna measurements 211
 6.1 Introduction 211
 6.2 Solution of Maxwell’s equation in cylindrical coordinates 216
 6.3 Solution of the scalar wave equation in cylindrical coordinates 219
 6.4 Construction of vector fields 229
 6.5 Derivation of cylindrical mode coefficients from cylindrical
 near-field data 235
 6.5.1 Orthogonality properties of cylindrical wave vectors 235
 6.5.2 Determining cylindrical mode coefficients from
 measured near-electric field components 240
 6.6 Derivation of asymptotic far-field parameters from
 cylindrical mode coefficients 245
 6.7 Development of the transmission formula 252
 6.7.1 The coupling equation – derivation of probe-compensated
 cylindrical near-field antenna measurements 253
6.7.2 Probe and test antenna 255
6.7.3 Effect of probe compensation in cylindrical near-field measurements 261
6.7.4 Calculation of probe cylindrical mode coefficients from far-field data 264
6.8 Sampling requirements for cylindrical near-field measurements 267
6.9 Implementation of cylindrical near-field to far-field transformation 274
6.10 Conical near-field antenna measurements 279
6.11 Summary 284
References 285

7 Spherical near-field antenna measurements 287
7.1 Introduction 287
7.2 Types of SNF ranges 293
 7.2.1 Roll over azimuth – (\(\phi/\theta\)) systems 293
 7.2.2 Swing arm – (\(\theta/\phi\)) systems 295
 7.2.3 Arch-roll rotated – (\(\theta/\phi\)) systems 297
 7.2.4 Articulating arm – (\(\theta/\phi\)) systems 299
 7.2.5 Robotic arm SNF systems 300
7.3 A Solution to Maxwell’s equations in spherical coordinates 302
7.4 Relating spherical mode coefficients to spherical near-field data 312
7.5 Sampling requirements and spherical mode truncation 319
7.6 Development of the transmission formula 332
7.7 Near-field probe correction 337
7.8 Far-field expressions 345
7.9 Practical acquisition schemes and examples 347
7.10 Summary 351
References 351

8 Near-field range assessment 355
8.1 Introduction 355
8.2 A framework for measurement uncertainty 355
8.3 The effects of unwanted signals on vector measurements 356
8.4 The statistical nature of error signals 365
8.5 Probe/Illuminator related errors 374
 8.5.1 Probe relative pattern 374
 8.5.2 Probe polarisation purity 381
 8.5.3 Probe alignment 383
8.6 Mechanical/Positioner related errors 386
 8.6.1 AUT alignment 387
 8.6.2 PNF probe \((x, y)\) position error 388
 8.6.3 PNF probe \(z\) position (planarity) error 394
 8.6.4 CNF probe \(\rho\) position error 400
8.6.5 SNF (\(\theta, \phi, r\)) positioning uncertainty 404
8.6.6 SNF axis non-orthogonality 422
8.6.7 SNF axis (\(\theta, \phi\)) non-intersection error 422

8.7 Absolute power level related errors 428
8.7.1 Gain standard uncertainty 428
8.7.2 Normalisation constant 429
8.7.3 Impedance mismatch 431

8.8 Processing related errors 443
8.8.1 Aliasing 443
8.8.2 Measurement area truncation 444

8.9 RF sub-system related errors 448
8.9.1 Receiver amplitude linearity 448
8.9.2 Systematic phase 451
8.9.3 Leakage 456
8.9.4 Receiver dynamic range 457

8.10 Environmental errors 460
8.10.1 Probe structure reflection 460
8.10.2 Chamber reflection 464
8.10.3 Random errors 468

8.11 Combining uncertainties 468
8.12 Inter-range comparisons 469
8.13 Summary 477

References 478

9 Mobile and body-centric antenna measurements 481

9.1 Introduction 481
9.2 Indoor far-field antenna measurements 481
9.3 Spherical near-field measurements 484
9.3.1 Over-the-air measurements 488
9.4 Low-gain antenna and S-Parameter measurement methods 491
9.5 Corruption by cables: the use of optical fibre links 494
9.6 On-body measurements 497
9.7 Efficiency measurement using wheeler cap 502
9.8 UWB antenna measurements 504
9.8.1 Return loss 506
9.8.2 Radiation pattern 506
9.8.3 UWB pseudo-time domain measurements 508
9.8.4 Fidelity analysis 511
9.8.5 True time domain measurements 512
9.8.6 Mean gain 515

9.9 Special facilities 516
9.9.1 Over-the-air multipath environment simulation for MIMO testing 516
9.9.2 Reverberation chamber measurements 516

References 518
10 Advanced antenna measurement topics

10.1 Introduction 523

10.2 Common topics 523

10.2.1 Probes and probe selection 523
10.2.2 Channel-balance correction for antenna measurements 538
10.2.3 Aperture diagnostics 545
10.2.4 Amplitude and phase drift correction: tie-scan correction 555
10.2.5 Alignment correction (in PNF, CNF and SNF) 559
10.2.6 Introduction to range reflection suppression 568

10.3 PNF topics 577

10.3.1 Bias leakage error 577
10.3.2 Compensation for probe translation effects in dual polarised planar near-field antenna measurements 580
10.3.3 Introduction to phase-less near-field antenna measurements 588
10.3.4 Planar mathematical absorber reflection suppression 596

10.4 CNF topics 611

10.4.1 Cylindrical mathematical absorber reflection suppression 611
10.4.2 Application of C-MARS to far-field and CATR measurements – FF-MARS 627

10.5 SNF topics 632

10.5.1 Spherical near-field electrical alignment 632
10.5.2 The radial distance to MRS ratio 641
10.5.3 Spherical mathematical absorber reflection suppression 642
10.5.4 Rotary joint wow correction for LP antennas 651

10.6 Power parameter definitions and their measurement 653

10.6.1 Directivity 653
10.6.2 Gain 657
10.6.3 Equivalent isotropically radiated power (EIRP) 668
10.6.4 Saturating flux density (SFD) 669

10.7 Summary 669

10.7.1 Summary of MARS 669

References 670

Appendices 673

A1.1 IEEE standard letter designations for radar-frequency bands 673
A1.2 Standard rectangular waveguide bands and selected properties 674
A1.3 Care and use of microwave coaxial connectors 674
A1.4 Reflection coefficient, return loss, transmission loss as a function of VSWR 678
A1.5 Coordinate systems and antenna measurements 678

A1.5.1 Azimuth over elevation 683
A1.5.2 Elevation over azimuth 685
A1.5.3 Polar spherical 687