ISEC 2014

16th International Stirling Engine Conference 24-26 September 2014 Bilbao, Spain

Contents

Akazawa, T. SiC Ceramics Heater for Free Piston Type of Stirling Engine	1
Alexakis, A. A 2-Dimensional Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Wankel-Type Stirling Machine	11
Barreno, I. Numerical study of the friction losses in Stirling engine heat exchangers	21
Bello, F. A CFD Analysis of the Air Flow through the Matrix Regenerator of Stirling Engines	58
Campos, A. Simulation of a latent heat thermal storage system within a Stirling based microCHP residential installation	72
Cheng, C-H. Experimental and Theoretical Study of a 90-K Beta-Type Stirling Cooler with Rhombic-Drive Mechanism	87
Cordon, M. A non-conventional double acting Stirling Engine design methodology	97
Costa, C. Figure of Merit Analysis of a Stirling Engine Regenerator Matrix through Experimental Studies	112
Deetlefs, I.N. Design, simulation, manufacture and testing of a free-piston Stirling engine electric generator	122
Flannery, B. Hybrid Stirling Engine-Adsorption Chiller for Truck APU Applications	132
Fula, A. Mechanical design and first test results of an Ericsson engine	142
Gheith, R. Parametric optimization of a Gamma type Stirling engine	151
Ghozzi, S. New configuration of Medium Temperature Difference (MTD) Free- Piston Stirling Engine for Power Generation	160
G.Gkounis. Assessment of the Performance of IC and Stirling engine based Micro Combine Heat and Power systems in UK residential conditions	168
Glushenkov, M. Regenerative Heat to Mechanical Energy Converter with Dense Working Fluid	177

Gonzalez, A. Design and building of a Stirling engine for microgeneration as a learning experience for future Industrial Engineers	187
Gorga, R.D. An Optimization Algorithm of Stirling Engine Performance for Low- Grade Heat Recovery	199
Gros, J. How to start researching in thermoacoustics	217
Gschwendtner, M. The Myth about Dead Volume in Stirling Engines	229
Hamaguchi, K. Experiment of a Single-Piston Stirling Engine and its Simple Analysis	250
Hiratsuka, Y. Development of 150W at 70K Split Stirling Cryocooler for High- temperature Superconductor Devices	256
Huang, Y. Analysis and Experiment on Exhaust Heat Recovery of a Gasoline Engine by a Stirling Engine	261
Ibsaine, R. A new heat driven compressor for heat pump application	271
Jacquot, A. Modeling of the thermodynamics, kinematics, and dynamics of a beta Stirling engine	280
Kato, Y.Which is better for regenerator matrix, metal gauze or smooth channel?	286
Khuel, H-D. Operating Characteristics of a Laboratory-Scale, Convertible Stirling- Vuilleumier-Hybrid CHP System Including a Reversed-Rotation Stirling Mode	294
Langdon-Arms, S. Performance of Heat-powered Unconstrained 4 Cylinder Double-acting Alphatype Liquid Piston Stirling Cooler	305
Lintao, W. Dynamic balance design technology for a V-type Stirling engine	320
Lu, T. Numerical and Experimental Investigation of a MILD Combustion Burner for Stirling Engines	325
Mahkamov, K. A Novel Solar Cooling system Based on a Fluid Piston Convertor	333
Malliotakis, E. An evaluation of energy saving potentials for districts served by distributed Stirling m-CHP units	341
Mangion, R. A medium temperature solar powered Stirling engine – a case of project based learning	359

۰.

Mangion, R. Development of a Stirling engine powered by parabolic trough collectors	370
Malliotakis, E. Performance monitoring of Stirling CHP units in an industrial district in Poland	387
Marra, F.S. Setup of an integrated Stirling Engine - Fluidized Bed (SE-FB) experimental system	399
Martinez, J.A. Portable solar cooker that can also generate electric power	410
Mesonero, I. Characterisation and simulation of a restored V-160 Stirling Engine	418
Nilsson, M. Performance testing of a Stirling engine, with implementation of high speed pressure measurements in the working gas channel	430
Peng, H. Research results of the characteristics in the Stirling engine regenerator	442
Pfeiffer, J. Analytical Modeling of Appendix Gap Losses in Stirling Cycle Machines	451
Pinedo, B. Tribological study of different sealing solutions for a Stirling engine	464
Rogdakis, E. Numerical Analysis of Stirling Engines Using Advanced Thermodynamic Quasi-steady Approaches	472
Rogdakis, E. Performance Characteristics of the Vuilleumier Heat Pump	490
Saito, T. A small-scale co-generation system fueled by wood pellets	513
Sala, F. Preliminary design criteria of Stirling Engines taking into account real gas effects	521
Sowale, A. Numerical Modelling of Free Piston Stirling Cycle Machines	535
Stempka, J. Concept of modified crank mechanism, characteristics and thermodynamic processes within the Stirling engine	542
Stolyarov, S.P. Heat exchange model in Stirling Engine regenerator	551
Takeuchi, M. The passive generation system combined wood chip boiler and Stirling engine	559
Toda, F. Proposal of the Performance Analysis for Stirling Engine	568

Ulloa, C. Application of a transient model for simulation of a Stirling-Based CHP system	576
Vavra, J. Tools for a Real Stirling Engine Cycle Thermodynamic Analysis	588
Yang, H-S. Development of a 500-W Beta-Type Stirling Engine by a Modified Non- Ideal Adiabatic Model	600
Zhou, J. Optimum design of piston rod used in Wobble Member Transmission Mechanism	609
Poster session	616
Awards	618