Contents

Preface ix

1. Introduction 1
 1.1 Some Properties of White Noise 1
 1.2 Preview of Applications 3
 1.3 A Calculus based on White Noise 6

2. White Noise Analysis: Some Basic Notions and Terminology 7
 2.1 T- and S-Transforms 8
 2.2 Simple Examples 9
 2.3 The Gauss Kernel 12
 2.4 Donsker Delta Function 13
 2.5 Lévy's Stochastic Area 14

3. Fluctuations with Memory 19
 3.1 Gibrat's Law 19
 3.2 Parametrizing the Effects of Memory 21
 3.3 Memory Functions and Probability Densities 24
 3.4 Fractional Brownian Motion 27
 3.5 Bessel-modified Brownian Motion 27
 3.6 Exponentially-modified Brownian Motion 28
 3.7 Moments of the Probability Density Function 28
 3.8 Standard Deviation with Memory Function 32
 3.9 Modified Diffusion Equation 34
 3.10 Example: Periodic Boundary Condition 36
3.11 Example: The Wedge Boundary for Diffusion with Memory 39
 3.11.1 Dirichlet Boundary Condition .. 41
 3.11.2 Neumann Boundary Condition .. 43

4. Complex Systems 47
 4.1 Scaling Property ... 48
 4.2 Metabolic Rate Fluctuation .. 49
 4.3 Fluctuations in Word Use .. 50
 4.4 Growth of Companies .. 50
 4.5 Sensitivity to Changes in Hurst Index 51

5. Time Series Analysis 53
 5.1 Time Series Fluctuation as Modified Brownian Motion 54
 5.2 Mean Square Displacement with Memory 55
 5.2.1 Wiener Process .. 56
 5.2.2 Fractional Brownian Motion ... 56
 5.2.3 Exponentially-modified Brownian Motion 57
 5.3 Typhoon Track Fluctuations .. 60
 5.4 Particle-tracking in Microrheology 62
 5.4.1 Exponentially-modified Brownian Motion in Viscoelastic Materials 63
 5.4.2 Mean Square Displacement from Microrheological Experiments 64

6. Fluctuations without Memory 65
 6.1 Correspondence between a Stochastic Differential Equation and the Fokker-Planck Equation ... 65
 6.2 Short-Time Solution for the Fokker-Planck Equation 71
 6.3 Path Integral for the Fokker-Planck Equation 77
 6.4 One-Dimensional Random Walk .. 78

7. Neurophysics 83
 7.1 Modelling Single Neuron Activities 86
 7.1.1 Relative Membrane Potential as Random Variable 86
 7.1.2 Path Integral for a Single Neuron 87
 7.1.3 Voltage and Time-Dependent Current Modulation 91
 7.1.4 Membrane Current Modulation: \(a(u, \tau) = b(u/\tau) \) 94
10.3 Infinite Wall Potential 157
10.4 Particle in a Box 159
10.5 Free Particle on the Half-line with General Boundary Conditions 162

11. Relativistic Quantum Mechanics 167
 11.1 Green Function for the Dirac Equation 168
 11.2 Dirac Particle in a Uniform Magnetic Field 169

Appendix A Useful Integrals 175
 A.1 Integrals with Gaussian White Noise Measure 175

Bibliography 177

Index 189