Parallel Circuit Simulation: A Historical Perspective and Recent Developments

Peng Li

Texas A&M University
College Station, Texas 77843
USA
pli@tamu.edu

now
the essence of knowledge
Boston – Delft
4.4 Parallelization of Nonlinear Relaxation and Waveform Relaxation Methods

4.5 Applicability to Modern Designs and Technologies

5 Parallel Domain Decomposition Methods I

5.1 Linear Circuit Analysis
5.2 Parallel Schur Complement
5.3 Parallel Schwarz Methods

6 Parallel Domain Decomposition Methods II

6.1 Parallel Preconditioning Techniques for Nonlinear Transient Simulation
6.2 Hierarchically Preconditioned Parallel Harmonic Balance
6.3 Parallel Multilevel Newton Method

7 Parallel Time-Domain Simulation Using Advanced Numerical Integration Techniques

7.1 Waveform Pipelining
7.2 Parallel Telescopic Projective Numerical Integration

8 Time-Domain Multialgorithm Parallel Circuit Simulation

8.1 Algorithmic Diversity in Numerical Integration
8.2 Algorithmic Diversity in Nonlinear Iterative Methods
8.3 Interalgorithm Synchronization and Communication
8.4 Parallel Performance Modeling and Runtime Optimization

9 Elements of Fast-SPICE Simulation Techniques

9.1 Techniques Stimulated by the Development of Fast-SPICE
9.2 Approximate Device and Parasitics Models
9.3 Event-Driven and Multirate Simulation 91
9.4 Hierarchical Isomorphic Simulation 92

10 Parallel Circuit Simulation on Heterogeneous Platforms 95

10.1 Acceleration of Device Model Evaluation 96
10.2 Acceleration of Matrix or System Solution 96
10.3 Ongoing and Future Directions 98

11 Conclusions 101

Acknowledgments 103

References 105