Extractive Metallurgy of Copper

Mark E. Schlesinger
Matthew J. King
Kathryn C. Sole
William G.I. Davenport
Contents

Preface xv
Preface to the Fourth Edition xvii
Preface to the Third Edition xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii

1. Overview 1
 1.1. Introduction 1
 1.2. Extracting Copper from Copper—Iron—Sulfide Ores 2
 1.2.1. Concentration by Froth Flotation 4
 1.2.2. Matte Smelting 4
 1.2.3. Converting 5
 1.2.4. Direct-to-Copper Smelting 7
 1.2.5. Fire Refining and Electrorefining of Blister Copper 7
 1.3. Hydrometallurgical Extraction of Copper 8
 1.3.1. Solvent Extraction 8
 1.3.2. Electrowinning 9
 1.4. Melting and Casting Cathode Copper 10
 1.4.1. Types of Copper Product 10
 1.5. Recycle of Copper and Copper-Alloy Scrap 11
 1.6. Summary 12
Reference 12
Suggested Reading 12

2. Production and Use 13
 2.1. Copper Minerals and Cut-off Grades 14
 2.2. Location of Extraction Plants 17
 2.3. Price of Copper 29
 2.4. Summary 29
References 29

3. Production of High Copper Concentrates — Introduction and Comminution 31
 3.1. Concentration Flowsheet 31
 3.2. The Comminution Process 31
 3.3. Blasting 32
 3.3.1. Ore-size Determination 34
 3.3.2. Automated Ore-toughness Measurements 34
 3.4. Crushing 35
 3.5. Grinding 35
 3.5.1. Grind Size and Liberation of Copper Minerals 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2.</td>
<td>Cooling Jackets</td>
<td>94</td>
</tr>
<tr>
<td>6.1.3.</td>
<td>Concentrate Burner</td>
<td>95</td>
</tr>
<tr>
<td>6.1.4.</td>
<td>Supplementary Hydrocarbon Fuel Burners</td>
<td>95</td>
</tr>
<tr>
<td>6.1.5.</td>
<td>Matte and Slag Tapholes</td>
<td>96</td>
</tr>
<tr>
<td>6.2.</td>
<td>Peripheral Equipment</td>
<td>96</td>
</tr>
<tr>
<td>6.2.1.</td>
<td>Concentrate Blending System</td>
<td>96</td>
</tr>
<tr>
<td>6.2.2.</td>
<td>Solids Feed Dryer</td>
<td>97</td>
</tr>
<tr>
<td>6.2.3.</td>
<td>Bin and Feed System</td>
<td>97</td>
</tr>
<tr>
<td>6.2.4.</td>
<td>Oxygen Plant</td>
<td>98</td>
</tr>
<tr>
<td>6.2.5.</td>
<td>Blast Heater (optional)</td>
<td>98</td>
</tr>
<tr>
<td>6.2.6.</td>
<td>Heat Recovery Boiler</td>
<td>98</td>
</tr>
<tr>
<td>6.2.7.</td>
<td>Dust Recovery and Recycle System</td>
<td>98</td>
</tr>
<tr>
<td>6.3.</td>
<td>Flash Furnace Operation</td>
<td>99</td>
</tr>
<tr>
<td>6.3.1.</td>
<td>Startup and Shutdown</td>
<td>99</td>
</tr>
<tr>
<td>6.3.2.</td>
<td>Steady-state Operation</td>
<td>99</td>
</tr>
<tr>
<td>6.4.</td>
<td>Control</td>
<td>100</td>
</tr>
<tr>
<td>6.4.1.</td>
<td>Concentrate Throughput Rate and Matte Grade Controls</td>
<td>100</td>
</tr>
<tr>
<td>6.4.2.</td>
<td>Slag Composition Control</td>
<td>101</td>
</tr>
<tr>
<td>6.4.3.</td>
<td>Temperature Control</td>
<td>101</td>
</tr>
<tr>
<td>6.4.4.</td>
<td>Reaction Shaft and Hearth Control</td>
<td>101</td>
</tr>
<tr>
<td>6.5.</td>
<td>Impurity Behavior</td>
<td>102</td>
</tr>
<tr>
<td>6.5.1.</td>
<td>Non-recycle of Impurities in Dust</td>
<td>102</td>
</tr>
<tr>
<td>6.5.2.</td>
<td>Other Industrial Methods of Controlling Impurities</td>
<td>103</td>
</tr>
<tr>
<td>6.6.</td>
<td>Outotec Flash Smelting Recent Developments and Future Trends</td>
<td>103</td>
</tr>
<tr>
<td>6.7.</td>
<td>Inco Flash Smelting</td>
<td>103</td>
</tr>
<tr>
<td>6.7.1.</td>
<td>Furnace Details</td>
<td>104</td>
</tr>
<tr>
<td>6.7.2.</td>
<td>Concentrate Burner</td>
<td>104</td>
</tr>
<tr>
<td>6.7.3.</td>
<td>Water Cooling</td>
<td>104</td>
</tr>
<tr>
<td>6.7.4.</td>
<td>Matte and Slag Tapholes</td>
<td>105</td>
</tr>
<tr>
<td>6.7.5.</td>
<td>Gas Uptake</td>
<td>105</td>
</tr>
<tr>
<td>6.7.6.</td>
<td>Auxiliary Equipment</td>
<td>105</td>
</tr>
<tr>
<td>6.7.7.</td>
<td>Solids Feed Dryer</td>
<td>106</td>
</tr>
<tr>
<td>6.7.8.</td>
<td>Concentrate Burner Feed System</td>
<td>106</td>
</tr>
<tr>
<td>6.7.9.</td>
<td>Offgas Cooling and Dust Recovery Systems</td>
<td>106</td>
</tr>
<tr>
<td>6.8.</td>
<td>Inco Flash Furnace Summary</td>
<td>106</td>
</tr>
<tr>
<td>6.9.</td>
<td>Inco vs. Outotec Flash Smelting</td>
<td>107</td>
</tr>
<tr>
<td>6.10.</td>
<td>Summary</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
<td>110</td>
</tr>
</tbody>
</table>

7. Submerged Tuyere Smelting: Noranda, Teniente, and Vanyukov 111

7.1. Noranda Process 111

7.2. Reaction Mechanisms 114

7.2.1. Separation of Matte and Slag 114

7.2.2. Choice of Matte Grade 115

7.2.3. Impurity Behavior 115

7.2.4. Scrap and Residue Smelting 115

7.3. Operation and Control 116

7.3.1. Control 116

7.4. Production Rate Enhancement 117

7.5. Teniente Smelting 117

7.5.1. Seed Matte 117
7.6. Process Description

7.7. Operation

7.8. Control

7.8.1. Temperature Control

7.8.2. Slag and Matte Composition Control

7.8.3. Matte and Slag Depth Control

7.9. Impurity Distribution

7.10. Discussion

7.10.1. Super-high Matte Grade and SO₂ Capture Efficiency

7.10.2. Campaign Life and Hot Tuyere Repairing

7.10.3. Furnace Cooling

7.10.4. Offgas Heat Recovery

7.11. Vanyukov Submerged Tuyere Smelting

7.12. Summary

References

Suggested Reading

8. Converting of Copper Matte

8.1. Chemistry

8.1.1. Coppermaking Reactions

8.1.2. Elimination of Impurities During Converting

8.2. Industrial Peirce–Smith Converting Operations

8.2.1. Tuyeres and Offgas Collection

8.2.2. Temperature Control

8.2.3. Choice of Temperature

8.2.4. Temperature Measurement

8.2.5. Slag and Flux Control

8.2.6. Slag Formation Rate

8.2.7. End Point Determinations

8.3. Oxygen Enrichment of Peirce–Smith Converter Blast

8.4. Maximizing Converter Productivity

8.4.1. Maximizing Solids Melting

8.4.2. Smelting Concentrates in the Converter

8.4.3. Maximizing Campaign Life

8.5. Recent Improvements in Peirce–Smith Converting

8.5.1. Shrouded Blast Injection

8.5.2. Scrap Injection

8.5.3. Converter Shell Design

8.6. Alternatives to Peirce–Smith Converting

8.6.1. Hoboken Converter

8.6.2. Flash Converting

8.6.3. Submerged-Tuyere Noranda Continuous Converting

8.6.4. Recent Developments in Peirce–Smith Converting Alternatives

8.7. Summary

References

Suggested Reading

9. Bath Matte Smelting: Ausmelt/Isasmelt and Mitsubishi

9.1. Basic Operations

9.2. Feed Materials

9.3. The TSL Furnace and Lances

9.4. Smelting Mechanisms

9.4.1. Impurity Elimination

References

Suggested Reading
9.5. Startup and Shutdown 163
9.6. Current Installations 164
9.7. Copper Converting Using TSL Technology 164
9.8. The Mitsubishi Process 165
 9.8.1. Introduction 165
 9.8.2. The Mitsubishi Process 165
 9.8.3. Smelting Furnace Details 166
 9.8.4. Electric Slag-Cleaning Furnace Details 167
 9.8.5. Converting Furnace Details 168
 9.8.6. Optimum Matte Grade 169
 9.8.7. Process Control in Mitsubishi Smelting/Converting 169
9.10. Summary 175
References 176
Suggested Reading 177

10. Direct-To-Copper Flash Smelting 179
 10.1. Advantages and Disadvantages 179
 10.2. The Ideal Direct-to-Copper Process 179
 10.3. Industrial Single Furnace Direct-to-Copper Smelting 182
 10.4. Chemistry 184
 10.5. Effect of Slag Composition on % Cu-in-Slag 185
 10.6. Industrial Details 185
 10.7. Control 186
 10.7.1. Target: No Matte Layer to Avoid Foaming 186
 10.7.2. High % Cu-in-Slag from No-Matte-Layer Strategy 186
 10.8. Electric Furnace Cu-from-Slag Recovery 186
 10.8.1. Glogów 187
 10.8.2. Olympic Dam 187
 10.9. Cu-in-Slag Limitation of Direct-to-Copper Smelting 187
 10.10. Direct-to-Copper Impurities 187
 10.11. Summary 188
References 189
Suggested Reading 189

11. Copper Loss in Slag 191
 11.1. Copper in Slags 191
 11.2. Decreasing Copper in Slag I: Minimizing Slag Generation 193
 11.3. Decreasing Copper in Slag II: Minimizing Copper Concentration in Slag 193
 11.4. Decreasing Copper in Slag III: Pyrometallurgical Slag Settling/Reduction 194
 11.5. Decreasing Copper in Slag IV: Slag Minerals Processing 197
 11.6. Summary 201
References 201
Suggested Reading 203

12. Capture and Fixation of Sulfur 205
 12.1. Offgases From Smelting and Converting Processes 206
 12.1.1. Sulfur Capture Efficiencies 207
 12.2. Sulfuric Acid Manufacture 208
14.2. Chemistry of Electrorefining and Behavior of Anode Impurities 252
 14.2.1. Au and Platinum-group Metals 253
 14.2.2. Se and Te 253
 14.2.3. Pb and Sn 254
 14.2.4. As, Bi, Co, Fe, Ni, S, and Sb 254
 14.2.5. Ag 255
 14.2.6. O 255
 14.2.7. Summary of Impurity Behavior 256

14.3. Equipment 257
 14.3.1. Anodes 258
 14.3.2. Cathodes 258
 14.3.3. Cells 259
 14.3.4. Electrical Components 260

14.4. Typical Refining Cycle 260

14.5. Electrolyte 261
 14.5.1. Addition Agents 262
 14.5.2. Electrolyte Temperature 266
 14.5.3. Electrolyte Filtration 266
 14.5.4. Removal of Impurities from the Electrolyte 266

14.6. Maximizing Copper Cathode Purity 267
 14.6.1. Physical Factors Affecting Cathode Purity 267
 14.6.2. Chemical Factors Affecting Cathode Purity 267
 14.6.3. Electrical Factors Affecting Cathode Purity 268

14.7. Minimizing Energy Consumption 269

14.8. Industrial Electrorefining 269

14.9. Recent Developments and Emerging Trends in Copper Electrorefining 274

14.10. Summary 275

References 275
Suggested Reading 279

15. Hydrometallurgical Copper Extraction: Introduction and Leaching 281
 15.1. Copper Recovery by Hydrometallurgical Flowsheets 281
 15.2. Chemistry of the Leaching of Copper Minerals 282
 15.2.1. Leaching of Copper Oxide Minerals 282
 15.2.2. Leaching of Copper Sulfide Minerals 283
 15.3. Leaching Methods 285
 15.4. Heap and Dump Leaching 287
 15.4.1. Chemistry of Heap and Dump Leaching 288
 15.4.2. Industrial Heap Leaching 290
 15.4.3. Industrial Dump Leaching 301
 15.5. Vat Leaching 301
 15.6. Agitation Leaching 303
 15.6.1. Oxide Minerals 303
 15.6.2. Sulfide Minerals 304
 15.7. Pressure Oxidation Leaching 304
 15.7.1. Economic and Process Drivers for a Hydrometallurgical Process for Chalcopyrite 304
 15.7.2. Elevated Temperature and Pressure Leaching 308
 15.8. Future Developments 315
Contents

15.9. Summary 316
References 317
Suggested Reading 322

16. Solvent Extraction 323
16.1. The Solvent-Extraction Process 323
16.2. Chemistry of Copper Solvent Extraction 324
16.3. Composition of the Organic Phase 325
16.3.1. Extractants 325
16.3.2. Diluents 327
16.4. Minimizing Impurity Transfer and Maximizing Electrolyte Purity 328
16.5. Equipment 329
16.5.1. Mixer Designs 329
16.5.2. Settler Designs 330
16.6. Circuit Configurations 331
16.6.1. Series Circuit 331
16.6.2. Parallel and Series-parallel Circuits 333
16.6.3. Inclusion of a Wash Stage 333
16.7. Quantitative Design of a Series Circuit 333
16.7.1. Determination of Extractant Concentration Required 333
16.7.2. Determination of Extraction and Stripping Isotherms 334
16.7.3. Determination of Extraction Efficiency 334
16.7.4. Determination of Equilibrium Stripped Organic Cu Concentration 334
16.7.5. Transfer of Cu Extraction into Organic Phase 335
16.7.6. Determination of Electrolyte Flowrate Required to Strip Cu Transferred 335
16.7.7. Alternative Approach 336
16.8. Quantitative Comparison of Series and Series-parallel Circuits 336
16.9. Operational Considerations 336
16.9.2. Crud 337
16.9.3. Phase Continuity 339
16.9.4. Organic Losses and Recovery 339
16.10. Industrial Solvent-Extraction Plants 339
16.11. Summary 344
References 344
Suggested Reading 346

17. Electrowinning 349
17.1. The Electrowinning Process 349
17.2. Chemistry of Copper Electrowinning 349
17.3. Electrical Requirements 350
17.4. Equipment and Operational Practice 351
17.4.1. Cathodes 351
17.4.2. Anodes 351
17.4.3. Cell Design 353
17.4.4. Current Density 355
17.4.5. Acid Mist Suppression 356
17.4.6. Electrolyte 356
17.4.7. Electrolyte Additives 360
17.5. Maximizing Copper Purity 360
17.6. Maximizing Energy Efficiency 361
17.7. Modern Industrial Electrowinning Plants 362
17.8. Electrowinning from Agitated Leach Solutions 362
17.9. Current and Future Developments 368
17.10. Summary 369
References 369
Suggested Reading 371

18. Collection and Processing of Recycled Copper 373
18.1. The Materials Cycle 373
 18.1.1. Home Scrap 373
 18.1.2. New Scrap 374
 18.1.3. Old Scrap 375
18.2. Secondary Copper Grades and Definitions 379
18.3. Scrap Processing and Beneficiation 380
 18.3.1. Wire and Cable Processing 380
 18.3.2. Automotive Copper Recovery 382
 18.3.3. Electronic Scrap Treatment 384
18.4. Summary 385
References 385
Suggested Reading 387

19. Chemical Metallurgy of Copper Recycling 389
19.1. Characteristics of Secondary Copper 389
19.2. Scrap Processing in Primary Copper Smelters 389
 19.2.1. Scrap Use in Smelting Furnaces 390
 19.2.2. Scrap Additions to Converters and Anode Furnaces 391
19.3. The Secondary Copper Smelter 391
 19.3.1. High-grade Secondary Smelting 391
 19.3.2. Smelting to Black Copper 391
 19.3.3. Converting Black Copper 393
 19.3.4. Fire Refining and Electrorefining 394
19.4. Summary 394
References 395
Suggested Reading 396

20. Melting and Casting 397
20.1. Product Grades and Quality 397
20.2. Melting Technology 399
 20.2.1. Furnace Types 399
 20.2.2. Hydrogen and Oxygen Measurement/Control 403
20.3. Casting Machines 403
 20.3.1. Billet Casting 404
 20.3.2. Bar and Rod Casting 404
 20.3.3. Oxygen-free Copper Casting 409
 20.3.4. Strip Casting 409
20.4. Summary 410
References 411
Suggested Reading 412
 21.1. Molybdenite Recovery and Processing
 21.2. Flotation Reagents
 21.3. Operation
 21.4. Optimization
 21.5. Anode Slimes
 21.5.1. Anode Slime Composition
 21.5.2. The Slime Treatment Flowsheet
 21.6. Dust Treatment
 21.7. Use or Disposal of Slag
 21.8. Summary
References
Suggested Reading

22. Costs of Copper Production
 22.1. Overall Investment Costs: Mine through Refinery
 22.1.1. Variation in Investment Costs
 22.1.2. Economic Sizes of Plants
 22.2. Overall Direct Operating Costs: Mine through Refinery
 22.2.1. Variations in Direct Operating Costs
 22.3. Total Production Costs, Selling Prices, Profitability
 22.3.1. Byproduct Credits
 22.4. Concentrating Costs
 22.5. Smelting Costs
 22.6. Electrorefining Costs
 22.7. Production of Copper from Scrap
 22.8. Leach/Solvent Extraction/Electrowinning Costs
 22.9. Profitability
 22.10. Summary
References
Suggested Reading

Index