Contents

Preface v

1. Introduction 1

2. Physical Principles of Ionic Polymer-Metal Composites 5
 2.1 Introduction ... 5
 2.2 Manufacturing IPMC Materials 6
 2.3 IPMC Electrode Selection and Associated Electrode Models 9
 2.3.1 Palladium-buffered Pt electrodes 9
 2.3.2 Electrode effect on mechanical and thermal behavior 16
 2.3.3 Electrode modeling 22
 2.4 Actuation Behavior and Mechanism of IPMCs 31
 2.4.1 Back relaxation phenomenon 32
 2.4.2 Electrochemical study of the IPMCs 35
 2.4.3 Low-temperature characteristics of IPMCs 38
 2.5 More Complex Configurations of IPMC Actuators 40
 2.5.1 Equivalent modeling of IPMCs based on beam theories 42
 2.5.2 3D full-scale physical model of patterned IPMCs . 46
 2.5.3 IPMCs as linear actuators 51
 2.5.4 IPMC-based actuators in multi-layer configurations 54

3. New IPMC Materials and Mechanisms 59
 3.1 Multi-Field Responsive IPMCs 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>IPMCs Loaded with Multiwalled Carbon Nanotubes</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>IPMCs Incorporating ZnO Thin Film</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>A Self-oscillating IPMC</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Self-oscillating actuation of IPMC</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Modeling the oscillating actuation</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>A Physics-based, Control-oriented Model</td>
<td>91</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Dynamics-governing PDEs</td>
<td>92</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Impedance and actuation models</td>
<td>95</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Experimental model validation</td>
<td>100</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Model-based control design: an H_{∞}-control example</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>A Dynamic Model for IPMC Sensors</td>
<td>104</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Outline of the modeling approach</td>
<td>107</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Experimental validation of the sensing model</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>A Nonlinear Model for IPMC Actuators</td>
<td>110</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Nonlinear capacitance</td>
<td>112</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Nonlinear circuit model and its validation</td>
<td>115</td>
</tr>
<tr>
<td>4.5</td>
<td>Conjugated Polymer Actuators: Modeling and Control</td>
<td>121</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Trilayer PPy Actuators</td>
<td>122</td>
</tr>
<tr>
<td>4.5.3</td>
<td>A Scalable Electro-chemo-mechanical Model</td>
<td>125</td>
</tr>
<tr>
<td>4.5.3.1</td>
<td>The model</td>
<td>125</td>
</tr>
<tr>
<td>4.5.3.2</td>
<td>Model scalability</td>
<td>128</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Robust Adaptive Control of Conjugated Polymer Actuators</td>
<td>129</td>
</tr>
<tr>
<td>4.5.4.1</td>
<td>Design of robust adaptive controller</td>
<td>130</td>
</tr>
<tr>
<td>4.5.4.2</td>
<td>Experimental results</td>
<td>134</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Redox Level-dependent Admittance Model</td>
<td>136</td>
</tr>
<tr>
<td>4.5.5.1</td>
<td>Model development</td>
<td>137</td>
</tr>
<tr>
<td>4.5.5.2</td>
<td>Experimental model validation</td>
<td>139</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Nonlinear Elasticity-based Modeling of Large Bending Deformation</td>
<td>140</td>
</tr>
<tr>
<td>4.5.6.1</td>
<td>Nonlinear mechanical model</td>
<td>141</td>
</tr>
</tbody>
</table>
5.6.2 Experimental model validation 144
5.7 Nonlinear Mechanics-Motivated Torsional Actuator 145
5.7.1 Nonlinear mechanical model 145
5.7.2 Actuator fabrication ... 148
5.7.3 Experimental results .. 148

6. Synthetic Dielectric Elastomer Materials 153
 6.1 Introduction .. 153
 6.2 Requirements of Dielectric Elastomer Actuator 154
 6.3 Synthetic Elastomer ... 156
 6.3.1 Material preparation 156
 6.3.2 Comparisons of primary material properties 156
 6.3.3 Experimental evaluations 159
 6.4 Effects of Additives on Actuating Performance 166
 6.4.1 The proposed additives 167
 6.4.2 Flow chart to modify the synthetic elastomer 167
 6.4.3 Experimental results and discussions 168
 6.4.4 Elastic modulus ... 169
 6.4.5 Stress relaxation 171
 6.4.6 Dielectric constant and dissipation factor 172
 6.4.7 Actuation measurement 172
 6.4.8 Electric field strength 174
 6.4.9 Discussion .. 176
 6.5 Discussion .. 177

7. Dielectric Elastomer Actuator 179
 7.1 Introduction .. 179
 7.2 Multi-Stacked Actuator 180
 7.2.1 The actuation principle 180
 7.2.2 Effects of boundary on actuation performance 181
 7.2.3 Design of multi-stacked Actuator 182
 7.2.4 Fabrication ... 187
 7.2.5 Experiments .. 190
 7.3 Controller of multi-stacked actuator 194
 7.3.1 Design of the PWM-PID controller 194
 7.3.2 Implementation of hardware 195
 7.3.3 Experimental results 197
 7.4 Discussion .. 199
8. Integrated Sensory Feedback for EAP Actuators

8.1 Introduction .. 201
8.2 Basic IPMC-PVDF Sensori-Actuator Structure 202
8.2.1 IPMC-PVDF structure and sensing circuit 202
8.2.2 Multilayer mechanical analysis 204
8.2.3 Compensation of feedthrough coupling 207
8.3 Application to Microinjection of Drosophila Embryos 210
8.4 Simultaneous Sensing of Displacement and Force 211
8.4.1 Differential sensing configuration 213
8.4.2 Experimental characterization of sensor performance 215
8.4.3 PVDF-based micro-force sensor 217
8.5 Demonstration in Feedback Control Experiments 218
8.6 Self-sensing Behavior of IPMCs 219

9. Device and Robotic Applications of EAPs

9.1 Modeling of IPMC-actuated Robotic Fish 225
9.1.1 Overview of the modeling approach 227
9.1.2 IPMC beam dynamics in fluid 229
9.1.3 The actuation model of the hybrid tail 230
9.1.4 Experimental validation of the speed model 232
9.2 IPMCs as Energy Harvesters 235
9.2.1 Electro-mechanical coupling 235
9.2.2 Experiments .. 237
9.2.3 Battery charging results 238
9.3 IPMC Actuator-driven Valveless Micropump 241
9.3.1 IPMC diaphragm .. 242
9.3.2 Nozzle/diffuser design and flow rate estimation 245
9.4 PPy Petals-actuated Micropump 248
9.4.1 Design, fabrication, and modeling of the pump 249
9.4.2 Experimental results 250
9.5 Multi-jointed Robotic Finger Driven by Dielectric Elastomer Actuator 253
9.5.1 Design of multi-jointed robot finger 254
9.5.2 Control of the robotic finger 264
9.5.3 Discussion ... 266
Contents

10. Closing 267

Bibliography 271