Lectures on **Advanced Mathematical Methods for Physicists**

Sunil Mukhi
Tata Institute of Fundamental Research, India

N Mukunda
formerly of Indian Institute of Science, India

World Scientific
Contents

Part I: Topology and Differential Geometry

Introduction to Part I

1 Topology

1.1 Preliminaries ... 5
1.2 Topological Spaces 6
1.3 Metric spaces .. 9
1.4 Basis for a topology 11
1.5 Closure .. 12
1.6 Connected and Compact Spaces 13
1.7 Continuous Functions 15
1.8 Homeomorphisms 17
1.9 Separability .. 18

2 Homotopy

2.1 Loops and Homotopies 21
2.2 The Fundamental Group 25
2.3 Homotopy Type and Contractibility 28
2.4 Higher Homotopy Groups 34

3 Differentiable Manifolds I

3.1 The Definition of a Manifold 41
3.2 Differentiation of Functions 47
3.3 Orientability .. 48
3.4 Calculus on Manifolds: Vector and Tensor Fields 50
3.5 Calculus on Manifolds: Differential Forms 55
3.6 Properties of Differential Forms 59
3.7 More About Vectors and Forms 62

4 Differentiable Manifolds II

4.1 Riemannian Geometry 65
4.2 Frames ... 67
4.3 Connections, Curvature and Torsion 69
4.4 The Volume Form .. 74
4.5 Isometry .. 76
4.6 Integration of Differential Forms 77
4.7 Stokes' Theorem .. 80
4.8 The Laplacian on Forms 83

5 Homology and Cohomology 87
5.1 Simplicial Homology 87
5.2 De Rham Cohomology 100
5.3 Harmonic Forms and de Rham Cohomology 103

6 Fibre Bundles ... 105
6.1 The Concept of a Fibre Bundle 105
6.2 Tangent and Cotangent Bundles 111
6.3 Vector Bundles and Principal Bundles 112

Bibliography for Part I 117

Part II: Group Theory and Structure and Representations of Compact Simple Lie Groups and Algebras 119

Introduction to Part II 121

7 Review of Groups and Related Structures 123
7.1 Definition of a Group 123
7.2 Conjugate Elements, Equivalence Classes 124
7.3 Subgroups and Cosets 124
7.4 Invariant (Normal) Subgroups, the Factor Group .. 125
7.5 Abelian Groups, Commutator Subgroup 126
7.6 Solvable, Nilpotent, Semisimple and Simple Groups . 127
7.7 Relationships Among Groups 129
7.8 Ways to Combine Groups — Direct and Semidirect Products . 131
7.9 Topological Groups, Lie Groups, Compact Lie Groups .. 132

8 Review of Group Representations 135
8.1 Definition of a Representation 135
8.2 Invariant Subspaces, Reducibility, Decomposability . 136
8.3 Equivalence of Representations, Schur's Lemma 138
8.4 Unitary and Orthogonal Representations 139
8.5 Contragredient, Adjoint and Complex Conjugate Representations 140
8.6 Direct Products of Group Representations 144
9 Lie Groups and Lie Algebras 147
9.1 Local Coordinates in a Lie Group 147
9.2 Analysis of Associativity 148
9.3 One-parameter Subgroups and Canonical Coordinates 151
9.4 Integrability Conditions and Structure Constants 155
9.5 Definition of a (real) Lie Algebra: Lie Algebra of a given Lie Group 157
9.6 Local Reconstruction of Lie Group from Lie Algebra 158
9.7 Comments on the $G \rightarrow \hat{G}$ Relationship 160
9.8 Various Kinds of and Operations with Lie Algebras 161

10 Linear Representations of Lie Algebras 165

11 Complexification and Classification of Lie Algebras 171
11.1 Complexification of a Real Lie Algebra 171
11.2 Solvability, Levi's Theorem, and Cartan's Analysis of Complex
(Semi) Simple Lie Algebras 173
11.3 The Real Compact Simple Lie Algebras 180

12 Geometry of Roots for Compact Simple Lie Algebras 183

13 Positive Roots, Simple Roots, Dynkin Diagrams 189
13.1 Positive Roots 189
13.2 Simple Roots and their Properties 189
13.3 Dynkin Diagrams 194

14 Lie Algebras and Dynkin Diagrams for $SO(2l), SO(2l+1), USp(2l), SU(l+1)$ 197
14.1 The $SO(2l)$ Family — D_l of Cartan 197
14.2 The $SO(2l + 1)$ Family — B_l of Cartan 201
14.3 The $USp(2l)$ Family — C_l of Cartan 203
14.4 The $SU(l + 1)$ Family — A_l of Cartan 207
14.5 Coincidences for low Dimensions and Connectedness 212

15 Complete Classification of All CSLA Simple Root Systems 215
15.1 Series of Lemmas 216
15.2 The allowed Graphs Γ 220
15.3 The Exceptional Groups 224

16 Representations of Compact Simple Lie Algebras 227
16.1 Weights and Multiplicities 227
16.2 Actions of E_6 and $SU(2)^{(a)}$ — the Weyl Group 228
16.3 Dominant Weights, Highest Weight of a UIR 230
16.4 Fundamental UIR's, Survey of all UIR's 233
16.5 Fundamental UIR's for A_l, B_l, C_l, D_l 234
16.6 The Elementary UIR's 240
16.7 Structure of States within a UIR 241

17 Spinor Representations for Real Orthogonal Groups 245

17.1 The Dirac Algebra in Even Dimensions 246
17.2 Generators, Weights and Reducibility of $U(S)$ – the spinor UIR's
 of D_l .. 248
17.3 Conjugation Properties of Spinor UIR's of D_l 250
17.4 Remarks on Antisymmetric Tensors Under $D_l = SO(2l)$ 252
17.5 The Spinor UIR's of $B_l = SO(2l + 1)$ 257
17.6 Antisymmetric Tensors under $B_l = SO(2l + 1)$ 260

18 Spinor Representations for Real Pseudo Orthogonal Groups 261

18.1 Definition of SO(q,p) and Notational Matters 261
18.2 Spinor Representations $S(A)$ of SO(p,q) for $p + q = 2l$ 262
18.3 Representations Related to $S(A)$ 264
18.4 Behaviour of the Irreducible Spinor Representations $S_\pm(A)$. 265
18.5 Spinor Representations of SO(p,q) for $p + q = 2l + 1$ 266
18.6 Dirac, Weyl and Majorana Spinors for SO(p,q) 267

Bibliography for Part II 273

Index 275