Complex Variables for Scientists and Engineers

An Introduction

Richard E. Norton
Department of Physics and Astronomy, UCLA

Edited by Ernest Abers
Department of Physics and Astronomy, UCLA

OXFORD UNIVERSITY PRESS
Contents

1 Complex numbers
1.1 Introduction
1.2 The complex plane
1.3 Elementary complex functions
1.4 An application
Exercises

2 Complex functions
2.1 Single-valued functions
2.2 Multiple-valued functions
2.3 Branch points and cuts
Exercises

3 Differentiation and analyticity
3.1 Definition of the derivative
3.2 Analyticity
3.3 Some properties of analytic functions*
Exercises

4 Complex functions as mappings*
4.1 Similarity mappings
4.2 Conformal mappings
4.3 Möbius transformations
Exercises

5 Closed contours and homology*
5.1 Topology of the complex plane
5.2 Winding number
5.3 Homology
5.4 Roots of \(f(z) = \alpha \)
5.5 Rouché’s theorem and two applications
Exercises

6 Integration
6.1 The complex integral
6.2 Integral form of the winding number
6.3 Integral of a complex derivative
6.4 Cauchy–Goursat theorem
6.5 Deformation of integration contours
Exercises
7 Cauchy's integral formula 133
 7.1 The integral formula 133
 7.2 Derivatives of analytic functions 141
 7.3 Maximum and minimum theorems 150
 Exercises 153
8 Multiply connected domains* 155
 8.1 Analyticity and vector calculus in two dimensions 155
 8.2 A theorem about harmonic functions 163
 Exercises 166
9 Power series 167
 9.1 Taylor series 167
 9.2 Laurent series 176
 9.3 Roots and the argument principle 183
 9.4 Analytic mappings* 186
 Exercises 191
10 Sequences, series, and infinite products 193
 10.1 Sequences of complex numbers 193
 10.2 Convergence of series 197
 10.3 Integration and differentiation of series 201
 10.4 The Cauchy–Hadamard formula 206
 10.5 Sequences of functions* 209
 10.6 Families of analytic functions* 210
 10.7 Analyticity of functions defined by integrals* 214
 10.8 Gamma function and infinite products 221
 Exercises 227
11 Isolated singularities 230
 11.1 Classification of isolated singularities 230
 11.2 Meromorphic functions 235
 11.3 Partial fractions 241
 Exercises 243
12 The residue theorem 245
 12.1 Residues and domains of analyticity 245
 12.2 Computing residues 246
 12.3 Residues at infinity 252
 12.4 Computing the residue of a pole 255
 Exercises 258
13 Real integrals 260
 13.1 Integrals of the form \(\int_{-\infty}^{\infty} R_n^m(x) \, dx \) 260
 13.2 Integrals of the form \(\int_{-\infty}^{\infty} R_n^m(x) e^{\pm iax} \, dx \) 265
 13.3 Integrals of the form \(\int_{0}^{2\pi} f(\sin \theta, \cos \theta) \, d\theta \) 270
 13.4 Integrals of the form \(\int_{0}^{\infty} x^p R_n^m(x) \, dx \) 272
13.5 Related integrals \hspace{2cm} 281
13.6 More general integrands \hspace{2cm} 287
Exercises \hspace{2cm} 291

14 Infinite sums \hspace{2cm} 294
14.1 Inverting a Taylor series \hspace{2cm} 294
14.2 Partial fractions: examples and applications \hspace{2cm} 296
14.3 Partial fraction expansions: general criteria \hspace{2cm} 303
14.4 More real integrals \hspace{2cm} 307
Exercises \hspace{2cm} 310

15 Factoring entire and meromorphic functions \hspace{2cm} 312
15.1 Entire functions* \hspace{2cm} 312
15.2 Infinite products \hspace{2cm} 319
15.3 The gamma function \hspace{2cm} 325
15.4 Meromorphic functions defined by poles* \hspace{2cm} 332
Exercises \hspace{2cm} 336

16 Method of steepest descent \hspace{2cm} 337
16.1 Asymptotic series for the gamma function \hspace{2cm} 337
16.2 Steepest descent and asymptotic expansions* \hspace{2cm} 341
16.3 Steepest descent — some special cases* \hspace{2cm} 349
Exercises \hspace{2cm} 356

17 Integral representations of the gamma and zeta functions \hspace{2cm} 358
17.1 Integral representation for the gamma function \hspace{2cm} 358
17.2 The Riemann zeta function \hspace{2cm} 361
Exercises \hspace{2cm} 370

18 Special functions and Fourier transforms \hspace{2cm} 372
18.1 Legendre functions \hspace{2cm} 372
18.2 The spherical functions \hspace{2cm} 383
18.3 Bessel functions \hspace{2cm} 389
18.4 The Fourier transform \hspace{2cm} 402
Exercises \hspace{2cm} 415

Appendix A Glossary of topological terms \hspace{2cm} 419
Appendix B Groups and matrices* \hspace{2cm} 422
B.1 Groups \hspace{2cm} 422
B.2 Two-dimensional complex matrices \hspace{2cm} 425
Appendix C Some extended proofs* \hspace{2cm} 429
C.1 Expansion of a general closed contour \hspace{2cm} 429
C.2 Montel’s criterion \hspace{2cm} 432
C.3 Theorems on the analyticity of integral representations \hspace{2cm} 438
Contents

Appendix D Other functions 441
 D.1 Special functions and the wave equation 441
Appendix E Further reading 445
Index 447