

Empirical Analysis of Localized Casing Wear with Variations in Contact Pressure and Drilling Conditions

Dissertation

Zur Erlangung des Doktorgrades der Ingenieurwissenschaften

Vorgelegt von

M.Sc. Tanveer Yaqoob

aus Karachi, Pakistan

Genehmigt von der

Fakultät für Energie- und Wirtschaftswissenschaften der Technischen Universität Clausthal

Tag der mündlichen Prüfung
09.12.2021

Table of Contents

1.	Intr	rodu	ction	1	
	1.1. Ca		ing wear estimation: Necessity	1	
	1.2.	Pot	ential nature of the problem	2	
	1.3.	Cor	nventional approaches in industry and associated issues	3	
	1.4.	Out	tline of chapters	4	
	1.5. Sta		te of the art	6	
	1.6.	Res	Research gap		
	1.7.	Obj	Objectives of the study		
	1.8.	Stu	dy Approach	9	
2.	Cas	ing v	wear: Mechanisms, estimation and consequences	. 10	
	2.1.	Cas	ing wear mechanisms	10	
	2.1.	1.	Adhesive wear	10	
	2.1.	2.	Abrasive wear	11	
	2.1.	.3.	Polishing wear	14	
	2.2.	Exis	sting models for casing wear determination	14	
	2.2.	1.	Soft-string model vs stiff string model for casing wear	14	
	2.2.	2.	Experimental contact pressure and wear volume estimation (Williamson, 1981)	15	
	2.2.	.3.	Wear track length model (Best, 1986)	17	
	2.2.	4.	Experimental setup for casing wear (Bol, 1986)	17	
	2.2.	5.	Experimental measurements for friction coefficient (White and Dawson, 1987)	18	
	2.2.	6.	Wear efficiency model (Hall and Garkasi, 1994)	19	
	2.2.	7.	Contact pressure threshold model (Hall and Malloy, 2005)	21	
	2.2.	8.	Prediction of casing wear in extended-reach drilling (Gao and Sun, 2010)	25	
	2.2.	9.	Model for Impact force distribution during DS vibrations (Samuel and Kumar, 2014)	27	
	2.2.	10.	Case-specific casing wear prediction using stiff-string model (Samuel and Kumar, 2016)) 29	
	2.2.	11.	Experimental study on casing wear in highly deviated drilling (Yu and Lian, 2016)	32	
	2.2.	12.	Prediction of combined casing wear due to eccentric and drillstring whirl (Gao and Zhoi 2018)	•	
	2.3.	Cas	ing wear monitoring	36	
	2.3.	1.	Ditch magnets	36	
	2.3.	2.	Multi-finger caliper log	37	

	2.3.3.	Magnetic thickness detector	38
	2.3.4.	Ultrasonic imager tool	38
2	.4. E	ffect of wear on casing collapse strength reduction	39
2	.5. E	ffect of wear on casing burst strength [34]	42
3.	Critica	al parameters affecting casing wear and its mitigation	46
3	.1. T	rajectory- Abrupt dogleg severities and tortuosities	46
	3.1.1.	Analyzing side force with DLS on existing wells using well-planning software	48
3	.2. D	rilling RPM, tripping and reaming	53
3	.3. N	Naterial selections	54
	3.3.1.	Casing material- Grade and inner surface treatment	54
	3.3.2.	Tool joint- Geometry and hard-facing	56
3	.4. F	luid selection	57
	3.4.1.	Choice of water- vs oil-based mud	58
	3.4.2.	Additives and solid content	58
3	.5. F	ormation anomalies	59
	3.5.1.	Hard-formations (high WOB)	59
	3.5.2.	Anisotropic and Interbedded formations	59
3	.6. E	ffect of mud motors and wirelines	60
3	.7. D	rillstring problems	60
	3.7.1.	DS bending and buckling	60
	3.7.2.	DS Whirl	61
	3.7.3.	Torsional Stick-Slip	61
3	.8. C	asing wear mitigation	62
	3.8.1.	Operational parameters and practices	62
	3.8.2.	Casing material	62
	3.8.3.	DP protectors	62
	3.8.4.	Spray coatings	63
	3.8.5.	Low-friction hardbands	64
4.		ion of wear parameters for experimental setup based on simulations and case ies	65
4	.1. C	ase Histories	71
	4.1.1.	Casing wear and collapse: Sajaa field, Sharjah UAE, 2003	72
	4.1.2.	Casing wear and collapse: Gulf of Mexico, 2014 [55]	74

	4.1.3	•	Casing wear: North US, 2015	7
	4.1.4. 4.1.5. 4.1.6.		Casing wear in S-shaped well: Latin America, 2015	7
			Casing wear: Middle East, 2015	7
			Casing wear: Alpine field, Alaska US, 2018	7
	4.1.7	•	DP and casing wear: Permian basin, 2020	8
	4.2.	Selec	cted design and material parameters	8
	4.2.1		Material and diameter selection	8
	4.2.2		Contact force, rotary speed and reciprocation speed selection	8
	4.2.3		Selection of mud properties	8
5.	Casir	ng w	ear frame: Design and test parameters	83
	5.1.	Olde	r frame: Components and test procedure	8
	5.2.	Mod	ification goals	84
	5.3.	Wea	r frame systems	8!
	5.3.1		Contact / side force system	8
	5.3.2		Tool joint fixation and rotation system	8
	5.3.3		Axial reciprocation system	8
	5.3.4		Fluid circulation system	89
	5.3.5.		Measurement, data acquisition and control systems	90
	5.3.5.1 5.3.5.2		Friction torque sensors	90
			Contact load sensor	92
	5.3	3.5.3.	Operating panel and display unit	9
	5.4. 1	Fram	e assembly and safety features	94
	5.5.	Com	parison of the wear frame with API casing wear standard	94
	5.5.1		Procedure and schematic	9
6.	Wea	r fra	me sensitivity and stress distribution simulation	97
	6.1.	Calib	ration of contact load under different operating parameters	97
	6.1.1		Analysis of contact load at a single contact location on tool joint	97
	6.1.2.		Analysis of contact load at multiple contact locations on tool joint	98
	6.1.3.		Analysis of contact load while sliding (without TJ rotation)	100
	6.1.4.		Analysis of contact load while rotating (without reciprocation)	101
	6.1.5.		Analysis of contact load while rotating with reciprocation	104
	6.2.	Sensi	tivity of friction torque sensor	107
	63 9	Strac	s Distribution Analysis at the C-section	109

7	. W	Wear tests and comparisons			
	7.1.	Sp	ecimen characteristics and preparation	111	
	7.	1.1.	Steel C-section	111	
		1.2.	Glass fiber C-section	112	
		1.3.	Carbon fiber C-section	113	
	7.2.	Ch	aracteristics of water-based mud	114	
	7.3.	Te	st procedure and operational parameters	115	
	7.4.	Re	porting	115	
	7.5.	W	ear tests results for steel casing with water	115	
	7.6.	W	ear tests results for steel casing with water-based mud as lubricant	119	
	7.7.	W	ear tests results for glass fiber casing with water-based mud as lubricant	123	
	7.8.	We	ear tests results for glass fiber casing with water	126	
	7.9.	We	ear tests results for carbon fiber casing with water-based mud as lubricant	128	
	7.10	. '	Wear tests results for carbon fiber casing with water	130	
	7.11		Comparison of wear test results	132	
8	. D	iscuss	sion of test results and observations	137	
	8.1.	An	alysis of calculated wear factors	137	
	8.2.	Co	ntact pressure thresholds (CPT) for casing materials	138	
	8.	2.1.	Steel casing	138	
	8.	2.2.	Glass fiber casing	139	
	8.	2.3.	Carbon fiber casing	140	
	8.3.	Ste	eady wear factor value for wear determination for long contact intervals	141	
	8.4.	An	alysis of the formation of protective film in mud tests	143	
	8.5.				
	8.6.	Pre	eliminary analysis of roughness profiles before and after tests	144	
	8.7.	Co	mparison to previous experimental setups	146	
9.	. Co	onclu	sions and future investigations	148	
	9.1.		rther modifications to the wear frame		
	9.2.	Fut	ture extensions of the study	150	
1(0.		ature References		
1:	1.		endices		