Extractive Metallurgy of **COPPER**

Sixth Edition

MARK E. SCHLESINGER

Missouri University of Science and Technology, Rolla, MO, United States

KATHRYN C. SOLE

Sole Consulting, Johannesburg, Gauteng, South Africa; University of Pretoria, Pretoria, Gauteng, South Africa

WILLIAM G. DAVENPORT

Emeritus Professor, Department of Materials Science and Engineering, University of Arizona, Tuscon, AZ, United States

GERARDO R. F. ALVEAR FLORES

Adjunct Professor, University of Queensland, Brisbane, QLD, Australia; Manager Technical Marketing, Rio Tinto Singapore Holdings Pte Ltd., Singapore

CONTENTS

Prefe	ice to	the sixth edition	xiii
1.	Ove	view	1
	1.1	ntroduction	1
	1.2	Ore—rock differentiation in the mine	2
	1.3	Extracting copper from copper—iron—sulfide ores	5
	1.4	Hydrometallurgical extraction of copper	11
	1.5	Melting and casting cathode copper	14
	1.6	Recycle of copper and copper alloy scrap	14
	1.7	Safety	16
1	1.8	Environment	16
	1.9	Summary	17
	Refer	ences	18
	Sugg	ested reading	18
	Furth	er reading	18
2.	Prod	luction and use	19
	2.1	Properties and uses of copper	19
	2.2	Global copper production	21
	2.3	Copper minerals, mines, and cut-off grades	22
	2.4	Locations of processing plants	25
	2.5	Price of copper	27
	2.6	Future outlook	28
	2.7	Summary	30
	Refer	ences	30
3.	Prod	uction of high copper concentrates—comminution and flotation	31
	3.1	Concentration flowsheet	31
	3.2	The comminution process	33
	3.3	Particle size control of flotation feed	42
	3.4	Froth flotation fundamentals	46
	3.5	Flotation chemicals	48
	3.6	Flotation of Cu ores	52
	3.7	Flotation cells	55

	3.8	Flotation process control	59
	3.9	Flotation product processing	62
	3.10	Other flotation separations	63
	3.11	Summary	63
	Refere	nces	64
	Sugge:	sted reading	66
4.	Pyron	netallurgical processing of copper concentrates	67
	4.1 F	undamental thermodynamic aspects associated with pyrometallurgical	
	C	opper processing	67
	4.2 T	ne Yazawa diagram and pyrometallurgical copper processing	69
	4.3 Si	melting: the first processing step	7
	4.4 ⊤	ne copper converting process	83
	4.5 T	ne refining process	86
	4.6 N	inor elements	87
	4.7 5	ummary	90
	Refere	nces	9
	Sugge	sted reading	93
5.	Theo	y to practice: pyrometallurgical industrial processes	95
	5.1 G	eneral considerations	95
	5.2 T	echnology evolution since 1970	96
	5.3	opper making technology classification	103
	5.4 E	volution to large-scale smelting	108
	5.5 C	hinese technology developments since 2000	11.
	5.6 S	ummary	115
	Refere	nces	113
	Sugge	sted readings	117
6.	Flash	smelting	119
	6.1	Metso Outotec flash furnace	119
	6.2	Peripheral equipment	123
	6.3	Flash furnace operation	130
	6.4	Control	131
	6.5	Impurity behavior	133
		Outotec flash smelting recent developments and future trends	134
		Inco flash smelting	135
		Inco flash furnace summary	138
		Inco versus Outotec flash smelting	139
		Summary	139
	Refere		139
	Furthe	r reading	14

		Contents
7.	Bath matte smelting processes	143
	7.1 Submerged tuyere: Noranda and Teniente processes	144
	7.2 Teniente smelting	151
	7.3 Vanyukov submerged tuyere smelting	156
	7.4 Top Submerged Lance	159
	7.5 Chinese bath smelting technology developments: SKS-BBS process and	
	side-blow smelting	171
	7.6 Concluding remarks	179
	References	181
	Suggested reading	183
8.	Converting of copper matte	185
	8.1 Introduction	185
	8.2 Technology options for batch and continuous copper converting	188
	8.3 Batch converting	191
	8.4 Industrial Peirce—Smith converting operations	197
	8.5 Batch converting of high matte grades	205
	8.6 Oxygen enrichment of Peirce—Smith converter blast	207
	8.7 Maximizing converter productivity	208
	8.8 Recent improvements in Peirce—Smith converting	210
	8.9 Alternatives to Peirce—Smith converting	211
	8.10 Top submerged lance converting	219
	8.11 Chinese continuous converting technologies	221
	8.12 Summary	224
	References	225
	Suggested reading	229
9.	Continuous copper making processes	231
	9.1 Single-stage process: direct to blister flash process	232
	9.2 Two-stage process: Dongying-Fangyuan process	244
	9.3 The Mitsubishi process: introduction	247
	9.4 Other developments for continuous processing of copper	257
	9.5 Summary	260
	References	262
	Suggested reading	264
	Further reading	264
10.	Copper loss in slag	265
	10.1 Copper in slags	265
	10.2 Decreasing copper in slag I: minimizing slag generation	267
	10.3 Decreasing copper in slag II: minimizing Cu concentration in slag	268

vii

	10.4	Decreasing copper in slag III: pyrometallurgical slag settling/reduction	268
	10.5	Decreasing copper in slag IV: slag minerals processing	274
	10.6	Summary	277
	Refer	ences	277
11.	Cap	ture and fixation of sulfur	281
	11.	Off-gases from smelting and converting processes	281
	11.2	2 Sulfuric acid manufacture	284
	11.3	3 Smelter off-gas treatment	284
	11.4	4 Gas drying	289
	11.5	5 Acid plant chemical reactions	290
	11.6	5 Industrial sulfuric acid manufacture	294
	11.7	7 Alternative sulfuric acid manufacturing methods	303
	11.8	B Recent and future developments in sulfuric acid manufacture	305
	11.9	Alternative sulfur products	307
	11.10) Summary	308
	Refer	ences	308
	Sugg	ested reading	311
	Furth	er reading	311
12.	Fire	refining (S and O removal) and anode casting	313
	12.1	Industrial methods of fire refining	313
	12.2	Chemistry of fire refining	318
	12.3	Choice of hydrocarbon for deoxidation	319
	12.4	Minor metals removal	320
	12.5	Casting anodes	322
	12.6	Continuous anode casting	324
	12.7	New anodes from rejects and anode scrap	326
	12.8	Summary	326
	Refer	ences	327
	Sugg	ested reading	328
13.	Elec	trolytic refining	331
	13.1	The electrorefining process	331
	13.2	Chemistry of electrorefining and behavior of anode impurities	333
	13.3	Equipment	337
	13.4	Typical refining cycle	341
	13.5	Electrolyte	342
	13.6	Maximizing cathode copper purity	346
	13.7	Minimizing energy consumption and maximizing current efficiency	348

			Contents
	13.8	Treatment of electrolyte bleed	349
	13.9	Treatment of slimes	350
	13.10	Industrial electrorefining	350
	13.11	Recent developments and emerging trends in copper electrorefining	350
	13.12	Summary	354
	Refere	nces	355
	Sugge	sted reading	359
14.	Hydro	ometallurgical copper extraction: introduction and leaching	361
	14.1	Copper recovery by hydrometallurgical flowsheets	361
	14.2	Chemistry of the leaching of copper minerals	362
	14.3	Leaching methods	364
	14.4	Heap leaching	366
	14.5	Dump leaching	382
	14.6	Vat leaching	383
	14.7	Agitation leaching	386
	14.8	Pressure oxidation leaching	391
	14.9	In situ leaching	396
	14.10	Hydrometallurgical processing of chalcopyrite concentrates	396
	14.11	Future developments	397
	14.12	Summary	398
	Refere	nces	401
	Sugge	sted reading	406
15.	Solve	nt extraction	407
	15.1	The solvent extraction process	407
	15.2	Chemistry of copper solvent extraction	408
	15.3	Composition of the organic phase	409
	15.4	Equipment	412
	15.5	Circuit configurations	414
	15.6	Quantitative design of a series circuit	417
	15.7	Quantitative comparison of series and series—parallel circuits	420
	15.8	Minimizing impurity transfer and maximizing electrolyte purity	421
	15.9		424
	15.10	Industrial solvent extraction plants	427
	15.11	Safety in solvent extraction plants	427
	15.12	Current and future developments	432
	15.13	Summary	433
	Refere	nces	433
	Sugge	sted reading	436

ix

16.	Elect	rowinning	437
	16.1	The electrowinning process	437
	16.2	Chemistry of copper electrowinning	437
	16.3	Electrical requirements	438
	16.4	Equipment	439
	16.5	Operational practice	443
	16.6	Maximizing copper quality	451
	16.7	Maximizing energy efficiency	453
	16.8	Modern industrial electrowinning plants	454
	16.9	Direct electrowinning from agitated leach solutions	455
	16.10	Copper electrowinning in EMEW cells	459
	16.11	Safety in electrowinning tankhouses	460
	16.12	Future developments	460
	16.13	Summary	461
	Refere	ences	461
	Sugge	ested reading	465
17.	Colle	ection and processing of recycled copper	467
	17.1	The materials cycle	467
	17.2	Secondary copper grades and definitions	470
	17.3	Scrap processing and beneficiation	474
	17.4	Summary	481
	Refere	ences	481
18.	Chen	nical metallurgy of copper recycling	483
	18.1	Characteristics of secondary copper	483
	18.2	Scrap processing in primary copper smelters	484
	18.3	The secondary copper smelter	485
	18.4	Summary	489
	Refere	ences	490
19.	Melt	ing and casting	493
	19.1	Product grades and quality	493
	19.2	Melting technology	496
	19.3	Casting machines	499
	19.4	Summary	506
	Refere	ences	507
	Sugge	ested reading	509

			Contents
20.	Bypro	oduct and waste streams	511
	20.1	Molybdenite recovery and processing	511
	20.2	Anode slimes	514
	20.3	Dust treatment	517
	20.4	Use or disposal of slag	519
	20.5	Summary	521
	Refere	nces	521
21.	Costs	of copper production	525
	21.1	Overall investment costs: mine through refinery	526
	21.2	Overall direct operating costs: mine through refinery	528
	21.3	Total production costs, selling prices, profitability	529
	21.4	Concentrating costs	529
	21.5	Smelting costs	530
	21.6	Electrorefining costs	533
et)	21.7	Production of copper from scrap	533
	21.8	Leach/solvent extraction/electrowinning costs	534
	21.9	Profitability	536
	21.10	Summary	536
	Refere	nces	536
22.	Towa	rd a sustainable copper processing	539
	22.1	Resource complexity and flowsheet solutions	539
	22.2	Multimetal flowsheet integration	540
	22.3	Concluding remarks	551
	Refere	nces	552
	Sugge	ested readings	553
Inde	X		555

xi