Berichte der Professur Rohstoffabbau und Spezialverfahren unter Tage

Band 8

Ke Hu

Pore Characteristics and Supercritical CH₄ and CO₂ Adsorption on Shales from the Sichuan Basin, Southwestern China

· · · · · · · · ·

Contents

Aca	dem	ic Thesi	s: Declaration of Authorship	iii					
Ack	know	ledgme	nts	v					
Abs	strac	t		vii					
Ow	n Pu	blished	Work	ix					
Сог	ntent	S		xi					
Lis	t of I	igures .		xv					
Lis	tof]	ables		xxi					
1	Intr	oductio	n	1					
•									
	1.1	Sile	Shale Gas as Energy						
	1.2	wo	Flowide Shale Gas Resources	2 2					
		1.2.1	Shale Gas in the United States	4					
		1.2.2	Shale Gas in China	۲ ع					
	1.0	1.2.3	Shale Gas in Other Countries	۵۵					
	1.3	Ch	allenges for Shale Gas Exploration and Floduction	0					
		1.3.1	Challenge of Pore Characteristics	10					
		1.3.2	Challenge of Evaluating Gas in Flace	on 11					
		1.3.3	Challenge of Carbon Dioxide (CO2) Enhancing share Gas Froduen	11					
	1.4	Ke	search Objectives						
	1.5	In	esis Structure						
2	Geological and Petroleum Physical Properties15								
	2.1	Ge	ological Setting of the Sichuan Basin	15					
	2.2	Tot	al Organic Carbon (TOC) Content	18					
	2.3	Ro	ck-Eval Pyrolysis	19					
	2.4	X-1	ray Diffraction (XRD)	22					
	2.5	Lo	w-Pressure N2 Adsorption-Desorption	26					
		2.5.1	Low-Pressure N2 Adsorption/Desorption Measurement	27					
		2.5.2	Results of Low Pressure N2 Adsorption-Desorption	29					
		2.5.3	The Fractal Dimension of Low-Pressure N2 Adsorption-Desorption	133					
	2.6	Lo	w-Pressure CO ₂ Adsorption	37					
	2.7	Hi	gh-Pressure Mercury Injection						
		2.7.1	Theory of High-Pressure Mercury Injection						
		2.7.2	The Fractal Dimension of High-Pressure Mercury Injection	39					
		2.7.3	Permeability of High-Pressure Mercury Injection	40					
		2.7.4	Tortuosity of High-Pressure Mercury Injection	40					
		2.7.5	Results of Mercury Injection	41					
	2.8	Co	nclusions	45					

3	Po	re Char	racteristics by FIB-SEM Imaging and Reconstruction	47		
	3.1	In	troduction			
	3.2	Sa	Samples and Methods			
		3.2.1	Samples	49		
		3.2.2	FIB-SEM Images Acquisition	49		
	3.3	FI	B-SEM Images Processing	51		
		3.3.1	FIB-SEM Images Denoising	51		
		3.3.2	Images Segmentation	53		
	3.4	R	esults and Discussion			
		3.4.1	Qualitative Results of Pore Morphology	57		
		3.4.2	3D Nanopore Characterization and Pore Size Distribution	60		
		3.4.3	Pore Snace and Connectivity Analysis			
		3.4.4	Absolute Permeability Simulation	73		
		3.4.5	Comparison of Pore Size Distribution from FIB-SEM and Other	Methods 76		
	3.5	Co	onclusions			
4	Suj	percriti	cal CH4 Adsorption and Desorption	79		
	4.1	In	troduction	79		
	4.2	Sa	mple Materials and Methods			
		4.2.1	Sample Materials			
		4.2.2	High-Pressure Methane Adsorption			
		4.2.3	Methane Excess Adsorption Models			
		4.2.4	Thermodynamics of Methane Adsorption			
	4.3	Re	esults			
		4.3.1	Methane Adsorption Isotherms and Data Fitting	85		
		4.3.2	Methane Adsorption Thermodynamics			
	4.4	Di	scussion	98		
		4.4.1	Effects of Total Organic Matter Content and Mineralogy	on Methane		
		Adsor	otion			
		4.4.2	Effect of Temperature on Methane Adsorption Capacity			
		4.4.3	N ₂ Adsorption/Desorption Hysteresis at Low-Pressures			
		4.4.4	Methane Adsorption–Desorption Hysteresis at High Pressure			
	4.5	Co	onclusions			
5	Sup	percriti	cal CO2 Adsorption and Desorption			
	5.1	In	troduction			
	5.2	Ex	periment Methods			
		5.2.1	Sample Preparation			
		5.2.2	ScCO ₂ Extraction Treatment			
		5.2.3	CO ₂ Adsorption Models			
		5.2.4	CO ₂ Adsorption Thermodynamics			
	5.3	Re	esults and Discussion			
		5.3.1	Results of ScCO ₂ Extraction			
		5.3.2	Uncertainty Analysis			
		5.3.3	CO2 Adsorption and Desorption at 60 °C	119		

	5.	.3.4	Excess Adsorption at Different Temperatures	
	5.	.3.5	Model Fitting of CO2 Adsorption Data	
	5.	.3.6	Thermodynamic Parameters	
	5.4	Di	scussion	
	5.	.4.1Ef	Adsorption Capacity	
			-	138
	5	.4.2	The Effect of Extraction on CO ₂ Sorption	
	5	.4.3	Extraction Effect on the Sorption Hysteresis	
	5.5	Co	nclusions	
6	Geolo	ogical		
	61	Int	roduction	
	6.2	M	odel for Gas in Place Evaluation	
	63	G	s in Place of Shale Samples	147
	6.4	Se	nsitive Analysis of the Gas in Place	
	6	.4.1	Sensitivity on the Gradient of Reservoir Pressure	
	6	.4.1	Sensitivity on the Geothermal Gradient	
	6.5	Co	onclusions	157
7	Cone	lusio	is and Future Work	
	7.1	Su	mmary of Conclusions	
	7.2	М	ain Contribution of Thesis	
	7.3	In	plications for Industry	
	7.4	Fı	ture Work	163
Re	eferenc	es		