METAL ADDITIVE MANUFACTURING

Ehsan Toyserkani, Dyuti Sarker, Osezua Obehi Ibhadode, Farzad Liravi, Paola Russo, Katayoon Taherkhani

University of Waterloo Waterloo, Ontario Canada

Contents

	Abbreviations			
1	Additive Manufacturing Process Classification, Applications, Trends,			
	Opp	portunities, and Challenges	1	
	1.1	Additive Manufacturing: A Long-Term Game Changer	1	
	1.2	AM Standard Definition and Classification	4	
	1.3	Why Metal Additive Manufacturing?	5	
	1.4	Market Size: Current and Future Estimation	11	
	1.5	Applications of Metal AM	12	
		1.5.1 Medical and Dental	14	
		1.5.2 Aerospace and Defense	15	
		1.5.3 Communication	17	
		1.5.4 Energy and Resources	18	
		1.5.5 Automotive	19	
		1.5.6 Industrial Tooling and Other Applications	20	
	1.6	Economic/Environmental Benefits and Societal Impact	20	
	1.7	AM Trends, Challenges, and Opportunities	23	
	1.8	Looking Ahead	27	
		References	28	
2	Bas	ics of Metal Additive Manufacturing	31	
	2.1	Introduction	31	
	2.2	Main Metal Additive Manufacturing Processes	32	
		2.2.1 Powder Bed Fusion (PBF)	32	
		2.2.2 Directed Energy Deposition (DED)	41	
		2.2.3 Binder Jetting (BJ)	49	
		2.2.4 Emerging Metal AM Processes	55	
	2.3	Main Process Parameters for Metal DED, PBF, and BJ	62	

		2.3.1	Main Output Parameters	64
		2.3.2	Combined Thermal Energy Source Parameters PBF and DED	65
		2.3.3	Beam Scanning Strategies and Parameters for PBF and DED	68
		2.3.4	Powder Properties for PBF, DED, and BJ	71
		2.3.5	Wire Properties for DED	76
		2.3.6	Layer Thickness for PBF, DED, and BJ	77
		2.3.7	Ambient Parameters for PBF, DED, and BJ	79
		2.3.8	Geometry-Specific Parameters (PBF)	80
		2.3.9	Support Structures for PBF	82
		2.3.10	Binder Properties for BJ	82
		2.3.11	Binder Saturation for BJ	84
	2.4	Materia	ıls	85
		2.4.1	Ferrous Alloys	86
		2.4.2	Titanium Alloys	86
		2.4.3	Nickel Alloys	86
		2.4.4	Aluminum Alloys	86
		Referen	nces	87
3	Mai	n Sub-S	ystems for Metal AM Machines	91
	3.1	Introdu	ction	91
	3.2	System	Setup of AM Machines	92
		3.2.1	Laser Powder Bed Fusion (LPBF)	92
		3.2.2	Laser Directed Energy Deposition (LDED) with Blown Powder	
			Known as Laser Powder-Fed (LPF)	92
		3.2.3	Binder Jetting (BJ)	93
	3.3	Laser B	Basics: Important Parameters Needed to be Known for AM	93
		3.3.1	Laser Theory	93
		3.3.2	Laser Components	100
		3.3.3	Continuous Vs. Pulsed Laser	101
		3.3.4	Laser Types	102
		3.3.5	Laser Beam Properties	109
	3.4	Electron	n Beam Basics	114
		3.4.1	Comparisons and Contrasts between Laser and Electron Beams	114
		3.4.2	Electron Beam Powder Bed Fusion Setup	114
		3.4.3	Electron Beam Mechanism	116
		3.4.4	Vacuum Chambers	119
	3.5	Powder	Feeders and Delivery Nozzles Technology	121
		3.5.1	Classification of Powder Feeders	121
		3.5.2	Powder Delivery Nozzles for DED	125
		3.5.3	Powder Bed Delivery and Spreading Mechanisms	128
		3.5.4	Wire Feed System	129
		3.5.5	Positioning Devices and Scanners in Laser-Based AM	130
		3.5.6	Print-Head in Binder Jetting	131
	3.6		ïle Formats	133
		3.6.1	CAD/CAM Software	134
	3.7	Summa	· ·	134
		Referer	nces	134

Contents

4	Dire	Directed Energy Deposition (DED): Physics and Modeling of Laser/Electron Beam Material Processing and DED 137				
	Bear					
	4.1	Introduction				
	4.2	Laser N	Material Interaction and the Associated Significant Parameters to			
		Laser A	$^{ m M}$	140		
		4.2.1	Continuous Versus Pulsed/Modulated Lasers	141		
		4.2.2	Absorption, Reflection, and Transmission Factors	143		
		4.2.3	Dependencies of Absorption Factor to Wavelength and Temperature	144		
		4.2.4	Angle of Incidence	144		
		4.2.5	Surface Roughness Effects	147		
		4.2.6	Scattering Effects	147		
	4.3	E-beam	Material Interaction	148		
	4.4	Power 1	Density and Interaction Time for Various Heat Source-based			
		Materia	ll Processing	149		
	4.5	Physica	l Phenomena and Governing Equations During DED	150		
		4.5.1	Absorption	150		
		4.5.2	Heat Conduction	151		
		4.5.3	Surface Convection and Radiation	152		
		4.5.4	Fluid Dynamics	153		
		4.5.5	Phase Transformation	156		
		4.5.6	Rapid Solidification	158		
		4.5.7	Thermal Stresses	158		
			Flow Field in DED with Injected Powder	159		
	4.6		ng of DED	161		
		4.6.1	Analytical Modeling: Basics, Simplified Equations, and Assumptions	161		
			Numerical Models for DED	165		
			Experimental-based Models: Basics and Approaches	166		
	4.7		tudies on Common Modeling Platforms for DED	168		
			Lumped Analytical Model for Powder-Fed LDED	168		
			Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED)	172		
			Numerical Modeling of LDED: Heat Transfer Model	184		
			Modeling of Wire-Fed E-beam DED (WF-EDED)	193		
			A Stochastic Model for Powder-Fed LDED	195		
	4.8	Summa		200		
		Referer	ices	200		
_	D	D	Paris Durance Dhusing and Modeling	203		
5	5.1		Fusion Processes: Physics and Modeling ction and Notes to Readers	203		
	5.2		s of Laser Powder bed Fusion (LPBF)	203		
	3.2		Heat Transfer in LPBF: Governing Equations and Assumptions	205		
			Fluid Flow in the Melt Pool of LPBF: Governing Equations	200		
			and Assumptions	215		
			Vaporization and Material Expulsion: Governing Equations	210		
			and Assumptions	218		
			Thermal Residual Stresses: Governing Equations and Assumptions	219		
			Numerical Modeling of LPBF	220		
			Case Studies on Common LPBF Modeling Platforms	222		
		2.2.0	Case Similes on Common Li Di mouenng i mijornis			

Co	itents
----	--------

X

	5.3	Physics and Modeling of Electron Beam Additive Manufacturing	228
		5.3.1 Electron Beam Additive Manufacturing Parameters	228
		5.3.2 Emissions in Electron Beam Sources	230
		5.3.3 Mathematical Description of Free Electron Current	231
		5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF)	233
		5.3.5 Case Studies	245
		5.3.6 Summary	249
		References	251
6	Bind	er Jetting and Material Jetting: Physics and Modeling	255
	6.1	Introduction	255
	6.2	Physics and Governing Equations	257
		6.2.1 Droplet Formation	257
		6.2.2 Droplet–Substrate Interaction	263
		6.2.3 Binder Imbibition	265
	6.3	Numerical Modeling	270
		6.3.1 Level-Set Model	270
		6.3.2 Lattice Boltzmann Method	274
	6.4	Summary	277
		References	277
7	Mate	rial Extrusion: Physics and Modeling	279
	7.1	Introduction	279
	7.2	Analytical Modeling of ME	281
		7.2.1 Heat Transfer and Outlet Temperature	281
		7.2.2 Flow Dynamics and Drop Pressure	283
		7.2.3 Die Swell	288
		7.2.4 Deposition and Healing	289
	7.3	Numerical Modeling of ME	291
	7.4	Summary	296
		References	296
8	Mate	rial Design and Considerations for Metal Additive Manufacturing	297
	8.1	Historical Background on Materials	297
	8.2	Materials Science: Structure-Property Relationship	298
	8.3	Manufacturing of Metallic Materials	299
	8.4	Solidification of Metals: Equilibrium	301
	8.5	Solidification in Additive Manufacturing: Non-Equilibrium	302
	8.6	Equilibrium Solidification: Theory and Mechanism	304
		8.6.1 Cooling Curve and Phase Diagram	304
	8.7	Non-Equilibrium Solidification: Theory and Mechanism	307
	8.8	Solute Redistribution and Microsegregation	308
	8.9	Constitutional Supercooling	312
	8.10	Nucleation and Growth Kinetics	314
		8.10.1 Nucleation	315
		8.10.2 Growth Rehavior	319

Contents xi

	8.11	Solidification Microstructure in Pure Metals and Alloys	321
	8.12	Directional Solidification in AM	324
	8.13	Factors Affecting Solidification in AM	325
		8.13.1 Cooling Rate	325
		8.13.2 Temperature Gradient and Solidification Rate	326
		8.13.3 Process Parameters	329
		8.13.4 Solidification Temperature Span	329
		8.13.5 Gas Interactions	330
	8.14	Solidification Defects	330
		8.14.1 Porosity	330
		8.14.2 Balling	332
		8.14.3 Cracking	335
		8.14.4 Lamellar Tearing	337
	8.15	Post Solidification Phase Transformation	337
		8.15.1 Ferrous Alloys/Steels	337
		8.15.2 Al Alloys	338
		8.15.3 Nickel Alloys/Superalloys	341
		8.15.4 Titanium Alloys	350
	8.16	Phases after Post-Process Heat Treatment	357
		8.16.1 Ferrous Alloys	357
		8.16.2 Al Alloys	357
		8.16.3 Ni Alloys	357
		8.16.4 Ti Alloys	358
	8.17	Mechanical Properties	358
		8.17.1 Hardness	359
		8.17.2 Tensile Strength and Static Strength	363
		8.17.3 Fatigue Behavior of AM-Manufactured Alloys	365
	8.18	Summary	371
		References	375
9	Addi	tive Manufacturing of Metal Matrix Composites	383
	9.1	Introduction	383
	9.2	Conventional Manufacturing Techniques for Metal Matrix	
		Composites (MMCs)	384
	9.3	Additive Manufacturing of Metal Matrix Composites (MMCs)	385
	9.4	AM Challenges and Opportunities	386
	9.5	Preparation of Composite Materials: Mechanical Mixing	387
	9.6	Different Categories of MMCs	389
	9.7	Additive Manufacturing of Ferrous Matrix Composites	390
		9.7.1 316 SS-TiC Composite	390
		9.7.2 316 SS–TiB ₂ Composite	392
		9.7.3 H13–TiB ₂ Composite	392
		9.7.4 H13–TiC Composite	393
		9.7.5 Ferrous–WC Composite	393
		9.7.6 Ferrous–VC Composites	394

xii Contents

9.8	Additive	Manufacturing of Titanium-Matrix Composites (TMCs)	395
	9.8.1	Ti–TiC Composite	396
	9.8.2	Ti–TiB Composites	396
	9.8.3	Ti-Hydroxyapatite (Ti-HA) Composites	399
	9.8.4	Ti-6Al-4V-Metallic Glass (MG) Composites	400
	9.8.5	$Ti-6Al-4V + B_4C$ Pre-alloyed Composites	401
	9.8.6	Ti-6Al-4V + Mo Composite	402
	9.8.7	Structure and Properties of Different TMCs	403
9.9	Additive	Manufacturing of Aluminum Matrix Composites	403
	9.9.1	Al-Fe ₂ O ₃ Composite	405
	9.9.2	AlSi ₁₀ Mg–SiC Composite	405
	9.9.3	AlSi ₁₀ Mg-TiC Composite	406
	9.9.4	2024Al-TiB ₂ Composite	406
	9.9.5	AlSi ₁₀ Mg-TiB ₂ Composite	407
	9.9.6	AA7075–TiB ₂ Composite	407
9.10		Manufacturing of Nickel Matrix Composites	407
		Inconel 625–TiC Composites	408
	9.10.2	•	409
9.11	Factors .	Affecting Composite Property	409
	9.11.1		409
	9.11.2		410
	9.11.3		411
	9.11.4	•	411
	9.11.5	Volume of Reinforcing Elements and Pore Formation	412
	9.11.6	Buoyancy Effects and Surface Tension Forces	412
9.12	Summar		414
	Reference		417
-		etal Additive Manufacturing	421
10.1	_	Frameworks for Additive Manufacturing	421
	10.1.1		422
	10.1.2	• •	422
	10.1.3	•	
		Topology Optimization	424
	10.1.4		427
	10.1.5	, , ,	427
10.2		Rules and Guidelines	427
	10.2.1	Laser Powder Bed Fusion (LPBF)	427
	10.2.2	Electron Beam Powder Bed Fusion (EB-PBF)	431
	10.2.3	Binder Jetting	433
	10.2.4	Technologies Compared	434
10.3	Topolog	gy Optimization for Additive Manufacturing	434
	10.3.1	Structural Optimization	435
	10.3.2	Topology Optimization	436
	10.3.3	Design-Dependent Topology Optimization	444
	10.3.4	Efforts in AM-Constrained Topology Optimization	450

Contents

	10.4	Lattice	Structure Design	458
		10.4.1	Unit Cell	458
		10.4.2	Lattice Framework	459
		10.4.3	Uniform Lattice	460
		10.4.4	Conformal Lattices	462
		10.4.5	Irregular/Randomized Lattices	462
		10.4.6	Design Workflows for Lattice Structures	463
	10.5	Design	for Support Structures	473
		10.5.1	Principles that Should Guide Support Structure Design	474
		10.5.2	Build Orientation Optimization	474
		10.5.3	Support Structure Optimization	476
	10.6	Design	Case Studies	483
		10.6.1	Redesign of an Aerospace Bracket to be Made by LPBF	484
		10.6.2	Design and Development of a Structural Member in a Suspension	
			Assembly Using EB Powder Bed Fusion	487
		10.6.3	Binder Jetting of the Framework of a Partial Metal Denture	488
		10.6.4	Redesign of a Crank and Connecting Rod	490
		10.6.5	Redesign of a Mechanical Assembly	492
		10.6.6	Solid-Lattice Hip Prosthesis Design	498
	10.7	Summa		501
		Referen		501
11	Moni	toring a	nd Quality Assurance for Metal Additive Manufacturing	507
	11.1		e Closed-Loop and Quality Assurance Platforms Essential?	507
	11.2	In-Situ	Sensing Devices and Setups	509
		11.2.1	Types of Sensors Used in Metal AM	509
		11.2.2	Mounting Strategies for In-line Monitoring Sensors in Metal	
			AM Setups	521
	11.3	Comme	ercially Available Sensors	522
		11.3.1	LPBF Commercial Sensors	522
		11.3.2	LDED Commercial Sensors	525
	11.4	Signal/I	Data Conditioning, Methodologies, and Classic Controllers for	
			ring, Control, and Quality Assurance in Metal AM Processes	526
		11.4.1	Signal/Data Conditioning and Controllers for Melt Pool	
			Geometrical Analysis	526
		11.4.2	Signal/Data Conditioning and Methodologies for Temperature	
			Monitoring and Analysis	531
		11.4.3	Signal/Data Conditioning and Methodologies for the Detection	
			of Porosity	532
		11.4.4	Signal/Data Conditioning and Methodologies for Detection of	
			Crack and Delamination	537
		11.4.5	Signal/Data Conditioning and Methodologies for Detection of	
			Plasma Plume and Spatters	538
	11.5	Machin	e Learning for Data Analytics and Quality Assurance in Metal AM	539
		11.5.1	Supervised Learning	539
			Unsupervised Learning	549

xiv	Contents

	11.6	Case Study	553
		11.6.1 Design of Experiments	554
		11.6.2 In-Situ Sensors and Quality Assurance Algorithm	555
		11.6.3 Correlation Between CT Scan and Analyzed Data	560
	11.7	Summary	563
		References	565
12	Safety	,	577
	12.1	Introduction	577
	12.2	Overview of Hazards	578
	12.3	AM Process Hazards	578
	12.4	Laser Safety in Additive Manufacturing	579
		12.4.1 Laser Categorization	579
		12.4.2 Laser Hazards	581
		12.4.3 Eye Protection	584
		12.4.4 Laser Protective Eyewear Requirements	584
	12.5	Electron Beam Safety	585
	12.6	Powder Hazards	585
		12.6.1 Combustibility	586
	12.7	Human Health Hazards	587
	12.8	Comprehensive Steps to AM Safety Management	587
		12.8.1 Engineering Controls	587
		12.8.2 Personal Protective Equipment	588
		12.8.3 AM Guidelines and Standards	588
	12.9	Summary	589
		References	590
	Indes		593