3 Chemical Reactions and Stoichiometry 134

3.1 The Conservation of Mass, Chemical Equations, and Stoichiometry 134
How to Balance Chemical Equations 135 A Step-by-Step Example of Balancing a Chemical Equation 136

3.2 Simple Patterns of Chemical Reactivity: Combination, Decomposition, and Combustion 139
Combination and Decomposition Reactions 140 Combustion Reactions 141

3.3 Formula Weights and Elemental Compositions of Substances 143
Formula and Molecular Weights 144 Elemental Compositions of Substances 144

3.4 Avogadro's Number and the Mole; Molar Mass 146
The Mole and Avogadro's Number 147 Molar Mass 147 Converting Between Masses, Moles, and Atoms/Molecules/Ions 148

3.5 Formula Weights and Elemental Compositions of Substances 152
Molecular Formulas from Empirical Formulas 154 Combustion Analysis 155

3.6 Reaction Stoichiometry 158

3.7 Limiting Reactants 162
Theoretical and Percent Yields 165

Chapter Summary and Key Terms 168 Learning Outcomes 168 Key Equations 168 Exercises 169 Additional Exercises 172 Integrative Exercises 173 Design an Experiment 174

Strategies for Success Problem Solving 145 Chemistry and Life Glucose Monitoring 149 Strategies for Success Design an Experiment 166

4 Reactions in Aqueous Solution 175

4.1 General Properties of Aqueous Solutions 175
Electrolytes and Nonelectrolytes 176 How Compounds Dissolve in Water 177 Strong and Weak Electrolytes 178

4.2 Precipitation Reactions 180 Solubility Guidelines for Ionic Compounds 180 Exchange (Metathesis) Reactions 182 Ionic Equations and Spectator Ions 183

4.3 Acids, Bases, and Neutralization Reactions 185
Acids 186 Bases 186 Strong and Weak Acids and Bases 187 Identifying Strong and Weak Electrolytes 187 Neutralization Reactions and Salts 189 Neutralization Reactions with Gas Formation 191

4.4 Oxidation–Reduction Reactions 193
Oxidation and Reduction 193 Oxidation Numbers 194 Oxidation of Metals by Acids and Salts 196 The Activity Series 197

4.5 Concentrations of Solutions 201
Molarity 201 Expressing the Concentration of an Electrolyte 201 Interconverting Molarity, Moles, and Volume 203 Dilution 204

4.6 Solution Stoichiometry and Chemical Analysis 207
Titrations 208
Chapter Summary and Key Terms 212 Learning Outcomes 213 Key Equations 213 Exercises 213 Additional Exercises 216 Integrative Exercises 218 Design an Experiment 218

Chemistry Put to Work Antacids 191 Strategies for Success Analyzing Chemical Reactions 200

5 Thermochemistry 219

5.1 The Nature of Chemical Energy 219

5.2 The First Law of Thermodynamics 223
System and Surroundings 223 Internal Energy 224 Relating ΔE to Heat and Work 225 Endothermic and Exothermic Processes 227 State Functions 228

5.3 Enthalpy 230
Pressure–Volume Work 231 Enthalpy Change 232

5.4 Enthalpies of Reaction 234

5.5 Calorimetry 238
Heat Capacity and Specific Heat 239 Constant-Pressure Calorimetry 240 Bomb Calorimetry (Constant-Volume Calorimetry) 242

5.6 Hess's Law 244

5.7 Enthalpies of Formation 248
Using Enthalpies of Formation to Calculate Enthalpies of Reaction 250
6 Electronic Structure of Atoms 274

6.1 The Wave Nature of Light 274

6.2 Quantized Energy and Photons 278

6.3 Line Spectra and the Bohr Model 281

6.4 The Wave Behavior of Matter 287

6.5 Quantum Mechanics and Atomic Orbitals 291

6.6 Representations of Orbitals 296

6.7 Many-Electron Atoms 300

6.8 Electron Configurations 303

6.9 Electron Configurations and the Periodic Table 309

7 Periodic Properties of the Elements 323

7.1 Development of the Periodic Table 323

7.2 Effective Nuclear Charge 326

7.3 Sizes of Atoms and Ions 330

7.4 Ionization Energy 336

7.5 Electron Affinity 341

7.6 Metals, Nonmetals, and Metalloids 343

7.7 Trends for Group 1 and Group 2 Metals 349

7.8 Trends for Selected Nonmetals 354

Integrative Exercises 321 Design an Experiment 322

A Closer Look Measurement and the Uncertainty Principle 290

A Closer Look Thought Experiments and Schrödinger's Cat 293

A Closer Look Probability Density and Radial Probability Functions 298

Chemistry and Life Nuclear Spin and Magnetic Resonance Imaging 304
8 Basic Concepts of Chemical Bonding 369

8.1 Lewis Symbols and the Octet Rule 369
- Lewis Symbols 370
- The Octet Rule 370

8.2 Ionic Bonding 371
- Energetics of Ionic Bond Formation 373
- Electron Configurations of Ions of the s- and p-Block Elements 375
- Transition Metal Ions 376

8.3 Covalent Bonding 378
- Lewis Structures 379
- Multiple Bonds 380

8.4 Bond Polarity and Electronegativity 381
- Electronegativity 382
- Dipole Moments 384
- Comparing Ionic and Covalent Bonding 387

8.5 Drawing Lewis Structures 388
- Formal Charge and Alternative Lewis Structures 390

8.6 Resonance Structures 393
- Resonance in Benzene 395

8.7 Exceptions to the Octet Rule 397
- Odd Number of Electrons 397
- Less Than an Octet of Valence Electrons 397
- More Than an Octet of Valence Electrons 398

8.8 Strengths and Lengths of Covalent Bonds 400
- Chapter Summary and Key Terms 404
- Learning Outcomes 405
- Key Equations 405
- Exercises 406
- Additional Exercises 408
- Integrative Exercises 409
- Design an Experiment 411

A Closer Look Calculation of Lattice Energies: The Born–Haber Cycle 376
A Closer Look Oxidation Numbers, Formal Charges, and Actual Partial Charges 392

9 Molecular Geometry and Bonding Theories 412

9.1 Molecular Shapes 412
9.2 The VSEPR Model 416
- Applying the VSEPR Model to Determine Molecular Shapes 417
- Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles 421

Molecules with Expanded Valence Shells 421
 Shapes of Larger Molecules 424

9.3 Molecular Shape and Molecular Polarity 426

9.4 Covalent Bonding and Orbital Overlap 429

9.5 Hybrid Orbitals 431
- sp Hybrid Orbitals 432
- sp2 and sp3 Hybrid Orbitals 433
- Hypervalent Molecules 434
- Hybrid Orbital Summary 436

9.6 Multiple Bonds 438
- Resonance Structures, Delocalization, and π Bonding 442
- General Conclusions about σ and π Bonding 444

9.7 Molecular Orbitals 445
- Molecular Orbitals of the Hydrogen Molecule 446
- Bond Order 448

9.8 Bonding in Period 2 Diatomic Molecules 450
- Molecular Orbitals for Li2 and Be2 451
- Molecular Orbitals from 2p Atomic Orbitals 452
- Electron Configurations for B2 through Ne2 455
- Electron Configurations and Molecular Properties 456
- Heteronuclear Diatomic Molecules 459

Chapter Summary and Key Terms 462
- Learning Outcomes 463
- Key Equations 463
- Exercises 463
- Additional Exercises 467
- Integrative Exercises 470
- Design an Experiment 471

A Closer Look Phases in Atomic and Molecular Orbitals 453
Chemistry Put to Work Orbitals and Energy 460

10 Gases 472

10.1 Characteristics of Gases 472

10.2 Pressure 474
- Atmospheric Pressure and the Barometer 475

10.3 The Gas Laws 479
- The Pressure–Volume Relationship: Boyle’s Law 480
- The Temperature–Volume Relationship: Charles’s Law 480
- The Quantity–Volume Relationship: Avogadro’s Law 481

10.4 The Ideal Gas Equation 483
- Relating the Ideal Gas Equation and the Gas Laws 486
- Gas Densities and Molar Mass 487
- Volumes of Gases in Chemical Reactions 489
10.5 Gas Mixtures and Partial Pressures 491
 Partial Pressures and Mole Fractions 493

10.6 The Kinetic-Molecular Theory of Gases 494
 Distributions of Molecular Speed 495 Application of Kinetic-Molecular Theory to the Gas Laws 496

10.7 Molecular Effusion and Diffusion 498
 Graham's Law of Effusion 499 Diffusion and Mean Free Path 501

10.8 Real Gases: Deviations from Ideal Behavior 503
 The van der Waals Equation 506

11.1 A Molecular Comparison of Gases, Liquids, and Solids 517

11.2 Intermolecular Forces 520
 Dispersion Forces 522 Dipole–Dipole Interactions 523 Hydrogen Bonding 524 Ion–Dipole Forces 527

11.3 Select Properties of Liquids 529
 Viscosity 530 Surface Tension 531 Capillary Action 532

11.4 Phase Changes 533
 Energy Changes Accompany Phase Changes 534 Heating Curves 535 Critical Temperature and Pressure 536

11.5 Vapor Pressure 539
 Volatility, Vapor Pressure, and Temperature 540 Vapor Pressure and Boiling Point 540

11.6 Phase Diagrams 542
 The Phase Diagrams of H₂O and CO₂ 544

11.7 Liquid Crystals 547
 Types of Liquid Crystals 547

12 Solids and Modern Materials 560

12.1 Classification of Solids 560
 Crystalline and Amorphous Solids 562 Unit Cells and Crystal Lattices 562

12.2 Metallic Solids 567
 The Structures of Metallic Solids 568 Close Packing 568 Alloys 572 Metallic Bonding 574 Electron-Sea Model 575 Molecular Orbital Model 575

12.3 Ionic Solids 579
 Structures of Ionic Solids 580

12.4 Covalent Solids 584
 Molecular Solids 585 Covalent-Network Solids 586 Semiconductors 586 Semiconductor Doping 589

12.5 Polymers 591
 Making Polymers 593 Structure and Physical Properties of Polymers 596

12.6 Nanomaterials 598
 Semiconductors on the Nanoscale 599 Metals on the Nanoscale 599 Carbon on the Nanoscale 601

Chapter Summary and Key Terms 552
 Learning Outcomes 552 Exercises 553 Additional Exercises 556 Integrative Exercises 558 Design an Experiment 559

Chemistry Put to Work
 Ionic Liquids 531
 The Clausius-Clapeyron Equation 541
 Liquid Crystal Displays 549

A Closer Look
 X-ray Diffraction 565
 The Ideal Gas Equation 497
 Alloys of Gold 574
 Solid-State Lighting 590
 Modern Materials in the Automobile 595
 Microporous and Mesoporous Materials 600
13 Properties of Solutions 613

13.1 The Solution Process 613
The Natural Tendency toward Mixing 614 The Effect of Intermolecular Forces on Solution Formation 615 Energetics of Solution Formation 616 Solution Formation and Chemical Reactions 617

13.2 Saturated Solutions and Solubility 619

13.3 Factors Affecting Solubility 621
Solute–Solvent Interactions 621 Pressure Effects 623 Temperature Effects 626

13.4 Expressing Solution Concentration 628
Mass Percentage, ppm, and ppb 628 Mole Fraction, Molarity, and Molality 629 Converting Concentration Units 631

13.5 Colligative Properties 633
Vapor–Pressure Lowering 633 Boiling-Point Elevation 636 Freezing-Point Depression 637 Osmosis 639 Determination of Molar Mass from Colligative Properties 640

13.6 Colloids 644
Hydrophilic and Hydrophobic Colloids 645 Colloidal Motion in Liquids 647

Chapter Summary and Key Terms 649
Learning Outcomes 650 Key Equations 650 Exercises 651 Additional Exercises 655 Integrative Exercises 656 Design an Experiment 657

Chemistry and Life Fat-Soluble and Water-Soluble Vitamins 623 Chemistry and Life Blood Gases and Deep-Sea Diving 627 A Closer Look Ideal Solutions with Two or More Volatile Components 635 A Closer Look The van’t Hoff Factor 642 Chemistry and Life Sickle-Cell Anemia 647

14 Chemical Kinetics 658

14.1 Factors That Affect Reaction Rates 658

14.2 Reaction Rates 660
Change of Rate with Time 662 Instantaneous Rate 663 Reaction Rates and Stoichiometry 664

14.3 Concentration and Rate Laws 666
Reaction Orders: The Exponents in the Rate Law 669 Magnitudes and Units of Rate Constants 670 Using Initial Rates to Determine Rate Laws 671

14.4 The Change of Concentration with Time 673
First-Order Reactions 674 Second-Order Reactions 676 Zero-Order Reactions 677 Half-Life 678

14.5 Temperature and Rate 680
The Collision Model 681 The Orientation Factor 681 Activation Energy 681 The Arrhenius Equation 684 Determining the Activation Energy 685

14.6 Reaction Mechanisms 687
Elementary Reactions 688 Multistep Mechanisms 688 Rate Laws for Elementary Reactions 689 The Rate-Determining Step for a Multistep Mechanism 690 Mechanisms with a Slow Initial Step 691 Mechanisms with a Fast Initial Step 693

14.7 Catalysis 695
Homogeneous Catalysis 696 Heterogeneous Catalysis 697 Enzymes 699

Chapter Summary and Key Terms 703
Learning Outcomes 704 Key Equations 704 Exercises 705 Additional Exercises 710 Integrative Exercises 713 Design an Experiment 714

15 Chemical Equilibrium 715

15.1 The Concept of Equilibrium 715

15.2 The Equilibrium Constant 718
Evaluating \(K_c \) 721 Equilibrium Constants in Terms of Pressure, \(K_p \) 722 Equilibrium Constants and Units 723

15.3 Understanding and Working with Equilibrium Constants 724
The Magnitude of Equilibrium Constants 725 The Direction of the Chemical Equation and \(K \) 726 Relating Chemical Equation Stoichiometry and Equilibrium Constants 726 Heterogeneous Equilibria 728
16 Acid–Base Equilibria 757

16.1 Acid–Base Equilibria 757
Arrhenius Acids and Bases 758 Brønsted–
Lowry Acids and Bases 758 The H+
Ion in Water 758 Proton-Transfer
Reactions 759 Conjugate Acid–Base Pairs 760
Relative Strengths of Acids and Bases 761

16.2 The Autoionization of Water 764
The Ion Product of Water 765

16.3 The pH Scale 767
pOH and Other “p” Scales 769 Measuring pH 769

16.4 Strong Acids and Bases 772
Strong Acids 773 Strong Bases 773

16.5 Weak Acids 775
Calculating K_a from pH 776 Percent Ionization 777
Using K_a to Calculate pH 778 Polyprotic Acids 782

16.6 Weak Bases 786
Types of Weak Bases 788 Relationship Between
K_a and K_b 789

16.7 Acid–Base Properties of Salt
Solutions 792
An Anion’s Ability to React with Water 793
A Cation’s Ability to React with Water 793
Combined Effect of Cation and Anion in Solution 795

16.8 Acid–Base Behavior and Chemical
Structure 797
Factors That Affect Acid Strength 797 Binary
Acids 798 Oxyacids 798 Carboxylic
Acids 801 Lewis Acids and Bases 802

17 Additional Aspects of
Aqueous Equilibria 813

17.1 The Common-Ion Effect 813

17.2 Buffers 817
Composition and Action of Buffers 818 Calculating
the pH of a Buffer 819 Buffer Capacity and pH
Range 823 Addition of Strong Acids or Bases to
Buffers 823

17.3 Acid–Base Titrations 826
Strong Acid–Strong Base Titrations 827 Weak Acid–
Strong Base Titrations 829 Titration with an Acid–
Base Indicator 833 Titrations of Polyprotic Acids 835

17.4 Solubility Equilibria 837
The Solubility-Product Constant, K_{sp} 838 Solubility
and K_{sp} 839

17.5 Factors That Affect Solubility 841
The Common-Ion Effect 842 Solubility and pH 843
Formation of Complex Ions 845 Amphotericism 848

17.6 Precipitation and Separation
of Ions 850
Selective Precipitation of Ions 852 Qualitative
Analysis for Metallic Elements 852

Chapter Summary and Key Terms 856
Learning Outcomes 856 Key Equations 856
Exercises 858 Additional Exercises 861
Integrative Exercises 862 Design an
Experiment 863

Chemistry and Life Blood as a Buffered
Solution 825
A Closer Look Limitations of Solubility
Products 841
Chemistry and Life Tooth Decay and
Fluoridation 845
A Closer Look Lead Contamination in Drinking
Water 849
18 Chemistry of the Environment 864

18.1 Earth’s Atmosphere 864
Composition of the Atmosphere 865
Photochemical Reactions in the Atmosphere 868
Ozone in the Stratosphere 870

18.2 Human Activities and Earth’s Atmosphere 872
The Ozone Layer and Its Depletion 873 Sulfur
Compounds and Acid Rain 874 Nitrogen Oxides and
Photochemical Smog 875 Greenhouse Gases: Water
Vapor, Carbon Dioxide, and Climate 877

18.3 Earth’s Water 881
The Global Water Cycle 882 Salt Water:
Earth’s Oceans and Seas 882 Freshwater and
Groundwater 884

18.4 Human Activities and Water Quality 885
Dissolved Oxygen and Water Quality 885 Water
Purification: Desalination 886 Water Purification:
Municipal Treatment 887

18.5 Green Chemistry 891
Supercritical Solvents 893 Greener Reagents and
Processes 893

Chapter Summary and Key Terms 896
Learning Outcomes 897 Exercises 897
Additional Exercises 902 Integrative
Exercises 948 Design an Experiment 949

A Closer Look Other Greenhouse Gases 880
A Closer Look Fracking and Water Quality 888
Chemistry and Life Ocean Acidification 890

19 Chemical Thermodynamics 904

19.1 Spontaneous Processes 904
Seeking a Criterion for Spontaneity 907 Reversible
and Irreversible Processes 907

19.2 Entropy and the Second Law of
Thermodynamics 910
The Relationship between Entropy and Heat 910
ΔS for Phase Changes 911 The Second Law of
Thermodynamics 912

19.3 The Molecular Interpretation of
Entropy and the Third Law of
Thermodynamics 914
Expansion of a Gas at the Molecular Level 914
Boltzmann’s Equation and Microstates 916
Molecular Motions and Energy 917
Making Qualitative Predictions about ΔS 918
The Third Law of Thermodynamics 920

19.4 Entropy Changes in Chemical
Reactions 922
Temperature Variation of Entropy 923 Standard
Molar Entropies 923 Calculating the Standard
Entropy Change for a Reaction 924 Entropy Changes
in the Surroundings 924

19.5 Gibbs Free Energy 926
Standard Free Energy of Formation 929

19.6 Free Energy and Temperature 932

19.7 Free Energy and the Equilibrium
Constant 935
Free Energy under Nonstandard Conditions 935
Relationship between ΔG° and K 938

Chapter Summary and Key Terms 941
Learning Outcomes 942 Key Equations 942
Exercises 943 Additional Exercises 946
Integrative Exercises 948 Design an
Experiment 949

A Closer Look The Entropy Change When a Gas
Expands Isothermally 912
Chemistry and Life Entropy and Human
Society 921
A Closer Look What’s “Free” About Free
Energy? 931
Chemistry and Life Driving Nonspontaneous
Reactions: Coupling Reactions 939

20 Electrochemistry 950

20.1 Oxidation States and Oxidation–
Reduction Reactions 950

20.2 Balancing Redox Equations 953
Half-Reactions 954 Balancing Equations by the
Method of Half-Reactions 954 Balancing Equations
for Reactions Occurring in Basic Solution 957

20.3 Voltaic Cells 959

20.4 Cell Potentials under Standard
Conditions 963
Standard Reduction Potentials 965 Strengths of
Oxidizing and Reducing Agents 968
22.8 The Other Group 15 Elements: P, As, Sb, and Bi 1081
Occurrence, Isolation, and Properties of Phosphorus 1082 Phosphorus Halides 1082 Oxy Compounds of Phosphorus 1083
22.9 Carbon 1085
Elemental Forms of Carbon 1086 Oxides of Carbon 1086 Carbonic Acid and Carbonates 1088 Carbides 1088
22.10 The Other Group 14 Elements: Si, Ge, Sn, and Pb 1089
General Characteristics of the Group 14 Elements 1090 Occurrence and Preparation of Silicon 1090 Silicates 1091 Glass 1092 Silicones 1092
22.11 Boron 1093
Chapter Summary and Key Terms 1096 Learning Outcomes 1097 Exercises 1097 Additional Exercises 1100 Integrative Exercises 1100 Design an Experiment 1101
A Closer Look The Hydrogen Economy 1058 Chemistry and Life Nitroglycerin, Nitric Oxide, and Heart Disease 1080 Chemistry and Life Arsenic in Drinking Water 1084 Chemistry Put to Work Carbon Fibers and Composites 1087

23 Transition Metals and Coordination Chemistry 1102
23.1 The Transition Metals 1102
Physical Properties 1104 Electron Configurations and Oxidation States 1105 Magnetism 1106
23.2 Transition-Metal Complexes 1108
The Development of Coordination Chemistry: Werner’s Theory 1109 The Metal–Ligand Bond 1111 Charges, Coordination Numbers, and Geometries 1112
23.3 Common Ligands in Coordination Chemistry 1114
Metals and Chelates in Living Systems 1116
23.4 Nomenclature and Isomerism in Coordination Chemistry 1121
Isomerism 1123 Constitutional Isomerism 1124 Stereoisomerism 1124
23.5 Color and Magnetism in Coordination Chemistry 1128
Color 1128 Magnetism of Coordination Compounds 1129
23.6 Crystal-Field Theory 1131
Electron Configurations in Octahedral Complexes 1134 Tetrahedral and Square-Planar Complexes 1136
Chapter Summary and Key Terms 1141 Learning Outcomes 1141 Exercises 1142 Additional Exercises 1145 Integrative Exercises 1147 Design an Experiment 1148
A Closer Look Entropy and the Chelate Effect 1118 Chemistry and Life The Battle for Iron in Living Systems 1119
A Closer Look Charge-Transfer Color 1138

24 The Chemistry of Life: Organic and Biological Chemistry 1149
24.1 General Characteristics of Organic Molecules 1149
24.2 Introduction to Hydrocarbons 1152
Structures of Alkanes 1154 Constitutional Isomers 1154 Nomenclature of Alkanes 1154 Cycloalkanes 1157 Reactions of Alkanes 1157
24.3 Alkenes, Alkynes, and Aromatic Hydrocarbons 1160
Alkenes 1160 Alkynes 1162 Addition Reactions of Alkenes and Alkynes 1163 Aromatic Hydrocarbons 1165 Stabilization of π Electrons by Delocalization 1165 Substitution Reactions of Aromatic Hydrocarbons 1166
24.4 Organic Functional Groups 1168
Alcohols 1168 Ethers 1170 Aldehydes and Ketones 1171 Carboxylic Acids and Esters 1171 Amines and Amides 1175
24.5 Chirality in Organic Chemistry 1177
24.6 Introduction to Biochemistry 1179
24.7 Proteins 1180
Amino Acids 1180 Polypeptides and Proteins 1182 Protein Structure 1183
24.8 Carbohydrates 1186
Disaccharides 1188 Polysaccharides 1188
24.9 Lipids 1190
Fats 1191 Phospholipids 1192