Urtzi Buijs • Yves Félix • Aniceto Murillo Daniel Tanré

Lie Models in Topology

Contents

In	trodu	tion
1	Back	ground
	1.1	Simplicial categories
		1.1.1 Simplicial sets
		1.1.2 Simplicial complexes
		1.1.3 Simplicial chains
	1.2	Differential categories
		1.2.1 Commutative differential graded algebras and
		the Sullivan model of a space
		1.2.2 Differential graded Lie algebras and
		the Quillen model of a space
		1.2.3 Differential graded coalgebras
		1.2.4 Differential graded Lie coalgebras
		1.2.5 A_{∞} -algebras
	1.3	Model categories
		1.3.1 Differential model categories
		1.3.2 Cofibrantly generated model categories 50
2	The	Quillen Functors \mathscr{L},\mathscr{C} and their Duals \mathscr{A},\mathscr{E}
	2.1	The functors $\mathscr L$ and $\mathscr C$
	2.2	The functors \mathscr{A} and \mathscr{E} 61
3	Com	plete Differential Graded Lie Algebras
	3.1	Complete differential graded Lie algebras
	3.2	The completion of free Lie algebras
	3.3	Completion vs profinite completion
4	Man	rer-Cartan Elements and the Deligne Groupoid
	4.1	Maurer-Cartan elements
	4.2	Exponential automorphisms and
		the Baker–Campbell–Hausdorff product
	4.3	The gauge action and the Deligne groupoid 100

viii Contents

	4.4	Applications to deformation theory	107			
	4.5	The Goldman–Millson Theorem	109			
5	The Lawrence–Sullivan Interval					
	5.1	Introducing the Lawrence–Sullivan interval	118			
	5.2	The LS interval as a cylinder	121			
	5.3	The flow of a differential equation, the gauge action	100			
	- 1	and the LS interval	122			
	5.4	Subdivision of the LS interval and a model of the triangle	125			
	5.5	Paths in a cdgl	128			
	PIOI	iographical notes	130			
6	The Cosimplicial cdgl \mathfrak{L}_{ullet}					
	6.1	The main result	132			
	6.2	Inductive sequences of models of the standard simplices	134			
	6.3	Sequences of equivariant models of the standard simplices	144			
	6.4	The cosimplicial cdgl \mathfrak{L}_{ullet}	147			
	6.5	An explicit model for the tetrahedron	148			
	6.6	Symmetric MC elements of simplicial complexes	152			
7	The Model and Realization Functors					
	7.1	Introducing the global model and realization functors. Adjointness	161			
	7.2	First features of the global model and realization functors	163			
	7.3	The path components and homotopy groups of $\langle L \rangle$	167			
	7.4	Homological behaviour of \mathfrak{L}_X	172			
	7.5	The Deligne groupoid of the global model \dots	177			
8	A Model Category for cdgl					
0	8.1	The model category	184			
	8.2	Weak equivalences and free extensions	189			
	8.3	A path object, a cylinder object and homotopy of morphisms	193			
	8.4	Minimal models of simplicial sets	199			
		iographical notes				
•		•				
9		Global Model Functor via Homotopy Transfer	20.4			
	9.1	The Dupont calculus on $A_{\rm PL}(\underline{\Delta}^{\bullet})$	204			
	9.2 D:b1	Obtaining \mathfrak{L}_{\bullet} and \mathfrak{L}_{X} by transfer	208			
	DIDL	iographical notes	211			

Contents

10	Extracting the Sullivan, Quillen and Neisendorfer Models from the Global Model					
	10.1	Connecting the global model with the Sullivan, Quillen and Neisendorfer models	214			
	10.2	From the Lie minimal model to the Sullivan model				
		and vice versa				
	10.3	Coformal spaces	220			
11	The Deligne–Getzler–Hinich Functor \mathbf{MC}_{ullet} and Equivalence of Realizations					
		The set of Maurer-Cartan elements as a set of morphisms	224			
	11.2	Simplicial contractions of $A_{\mathrm{PL}}(\underline{\Delta}^{\bullet})$	228			
	11.3	The Deligne–Getzler–Hinich ∞ -groupoid	231			
	11.4	Equivalence of realizations and Bousfield–Kan completion	237			
	Bibli	ographical notes	241			
12	Examples					
	12.1	Lie models of 2-dimensional complexes. Surfaces	245			
	12.2	Lie models of tori and classifying spaces of right-angled				
		Artin groups	253			
		Lie model of a product	255			
	12.4	Mapping spaces	262			
		12.4.1 Lie models of mapping spaces	263			
		12.4.2 Lie models of pointed mapping spaces	266			
		12.4.3 Lie models of free loop spaces	267			
		12.4.4 Simplicial enrichment of cdgl and cdga	269			
		12.4.5 Complexes of derivations and homotopy groups	071			
	10 5	of mapping spaces	271275			
	12.5	Homotopy invariants of the realization functor \dots	276			
		12.5.1 Action of $\pi_1\langle L \rangle$ on $\pi_*\langle L \rangle$	$\frac{276}{278}$			
		12.5.2 The rational homotopy Lie algebra of $\langle L \rangle$	280			
	Ribli	ographical notes	281			
•		•	201			
No		n Index	200			
		eral notation	283			
	Cate	gories	286			
Bil	bliogr	aphy	289			
Inc	dex .		297			