
BEYOND THE

BASIC STUFF

WITH PYTHON

BcAt Practice* for

Writing Clean Code

Al Sweigart

$
no starch

press

San Francisco

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xix

INTRODUCTION xxi

Who Should Read This Book and Why xxii

About This Book xxii

Your Programming Journey xxiv

PART I: GETTING STARTED 1

l

DEALING WITH ERRORS AND ASKING FOR HELP 3

How to Understand Python Error Messages 4

Examining Tracebacks 4

Searching for Error Messages 7

Preventing Errors with Linters 8

How to Ask for Programming Help 9

Limit Back and Forth by Providing Your Information Upfront 10

State Your Question in the Form of an Actual Question 10

Ask Your Question on the Appropriate Website 10

Summarize Your Question in the Headline 11

Explain What You Want the Code to Do 11

Include the Full Error Message 11

Share Your Complete Code 11

Make Your Code Readable with Proper Formatting 12

Tell Your Helper What You've Already Tried 13

Describe Your Setup 13

Examples of Asking a Question 14

Summary 14

2

ENVIRONMENT SETUP AND THE COMMAND LINE 17

The Filesystem 18

Paths in Python 18

The Home Directory 19

The Current Working Directory 19

Absolute vs. Relative Paths 20

Programs and Processes 21

The Command Line 22

Opening a Terminal Window 23

Running Programs from the Command Line 23

Using Command Line Arguments 24

Running Python Code from the Command Line with < 26

Running Python Programs from the Command Line 26

Running the py.exe Program 26

Running Commands from a Python Program 27

Minimizing Typing with Tab Completion 27

Viewing the Command History 28

Working with Common Commands 28

Environment Variables and PATH 35

Viewing Environment Variables 36

Working with the PATH Environment Variable 36

Changing the Command Line's PATH Environment Variable 37

Permanently Adding Folders to PATH on Windows 38

Permanently Adding Folders to PATH on macOS and Linux 39

Running Python Programs Without the Command Line 39

Running Python Programs on Windows 40

Running Python Programs on macOS 41

Running Python Programs on Ubuntu Linux 41

Summary 42

PART III: BEST PRACTICES, TOOLS,
AND TECHNIQUES 43

3

CODE FORMATTING WITH BLACK 45

How to Lose Friends and Alienate Co-Workers 46

Style Guides and PEP 8 46

Horizontal Spacing 47

Use Space Characters for Indentation 47

Spacing Within a Line 48

Vertical Spacing 51

A Vertical Spacing Example 51

Vertical Spacing Best Practices 52

Black: The Uncompromising Code Formatter 53

Installing Black 54

Running Black from the Command Line 54

Disabling Black for Parts of Your Code 57

Summary 58

4

CHOOSING UNDERSTANDABLE NAMES 59

Casing Styles 60

PEP 8's Naming Conventions 61

Appropriate Name Length 61

Too Short Names 61

Too Long Names 63

Make Names Searchable 64

Avoid Jokes, Puns, and Cultural References 64

Don't Overwrite Built-in Names 65

The Worst Possible Variable Names Ever 66

Summary 67

XII Contents in Detail

5

FINDING CODE SMELLS 69

Duplicate Code 70

Magic Numbers 71

Commented-Out Code and Dead Code 74

Print Debugging 75

Variables with Numeric Suffixes 76

Classes That Should Just Be Functions or Modules 77

List Comprehensions Within List Comprehensions 77

Empty except Blocks and Poor Error Messages 79

Code Smell Myths 80

Myth: Functions Should Have Only One return Statement at the End 80

Myth: Functions Should Have at Most One try Statement 81

Myth: Flag Arguments Are Bad 82

Myth: Global Variables Are Bad 82

Myth: Comments Are Unnecessary 83

Summary 84

6

WRITING PYTHONIC CODE 87

The Zen of Python 88

Learning to Love Significant Indentation 91

Commonly Misused Syntax 92

Use enumerate!) Instead of range() 92

Use the with Statement Instead of open() and close() 93

Use is to Compare with None Instead of == 94

Formatting Strings 95
Use Raw Strings If Your String Has Many Backslashes 95
Format Strings with F-Strings 96

Making Shallow Copies of Lists 97

Pythonic Ways to Use Dictionaries 98

Use get() and setdefaultQ with Dictionaries 98

Use collections.defaultdict for Default Values 99

Use Dictionaries Instead of a switch Statement 100

Conditional Expressions: Python's "Ugly" Ternary Operator 101

Working with Variable Values 103

Chaining Assignment and Comparison Operators 103

Checking Whether a Variable Is One of Many Values 103

Summary 104

7

PROGRAMMING JARGON 107

Definitions 108

Python the Language and Python the Interpreter 108

Garbage Collection 109

Literals 109

Keywords 110

Objects, Values, Instances, and Identities Ill

Items 114

Contents in Detail XIII

Mutable and Immutable 114

Indexes, Keys, and Hashes 117

Containers, Sequences, Mapping, and Set Types 119

Dunder Methods and Magic Methods 120

Modules and Packages 120

Callables and First-Class Objects 121

Commonly Confused Terms 122

Statements vs. Expressions 122

Block vs. Clause vs. Body 123

Variable vs. Attribute 124

Function vs. Method 124

Iterable vs. Iterator 125

Syntax vs. Runtime vs. Semantic Errors 126

Parameters vs. Arguments 128

Type Coercion vs. Type Casting 128

Properties vs. Attributes 128

Bytecode vs. Machine Code 129

Script vs. Program, Scripting Language vs. Programming Language 129

Library vs. Framework vs. SDK vs. Engine vs. API 130

Summary 131

Further Reading 131

8

COMMON PYTHON GOTCHAS 133

Don't Add or Delete Items from a List While Looping Over It 134

Don't Copy Mutable Values Without copy.copy() and copy.deepcopy() 140

Don't Use Mutable Values for Default Arguments 142

Don't Build Strings with String Concatenation 144

Don't Expect sortQ to Sort Alphabetically 146

Don't Assume Floating-Point Numbers Are Perfectly Accurate 147

Don't Chain Inequality != Operators 149

Don't Forget the Comma in Single-Item Tuples 150

Summary 150

9

ESOTERIC PYTHON ODDITIES 153

Why 256 Is 256 but 257 Is Not 257 154

String Interning 155

Python's Fake Increment and Decrement Operators 156

All of Nothing 157

Boolean Values Are Integer Values 158

Chaining Multiple Kinds of Operators 159

Python's Antigravity Feature 160

Summary 160

10

WRITING EFFECTIVE FUNCTIONS 161

Function Names 162

Function Size Trade-Offs 162

XIV Contents in Detail

Function Parameters and Arguments 165

Default Arguments 165

Using * and **
to Pass Arguments to Functions 166

Using * to Create Variadic Functions 167

Using
**

to Create Variadic Functions 169

Using
* and **

to Create Wrapper Functions 171
Functional Programming 172

Side Effects 172

Higher-Order Functions 174

Lambda Functions 174

Mapping and Filtering with List Comprehensions 175

Return Values Should Always Have the Same Data Type 177

Raising Exceptions vs. Returning Error Codes 178

Summary 179

11

COMMENTS, DOCSTRINGS, AND TYPE HINTS 181

Comments 182

Comment Style 183

Inline Comments 184

Explanatory Comments 184

Summary Comments 185

"Lessons Learned" Comments 185

Legal Comments 186

Professional Comments 186

Codetags and TODO Comments 187

Magic Comments and Source File Encoding 1 87

Docstrings 188

Type Hints 190

Using Static Analyzers 192

Setting Type Hints for Multiple Types 194

Setting Type Hints for Lists, Dictionaries, and More 195

Backporting Type Hints with Comments 196

Summary 197

12

ORGANIZING YOUR CODE PROJECTS WITH GIT 199

Git Commits and Repos 200

Using Cookiecutter to Create New Python Projects 200

Installing Git 202

Configuring Your Git Username and Email 203

Installing GUI Git Tools 203

The Git Workflow 204

How Git Keeps Track of File Status 204

Why Stage Files? 206

Creating a Git Repo on Your Computer 206

Adding Files for Git to Track 208

Ignoring Files in the Repo 209

Committing Changes 210

Deleting Files from the Repo 214

Renaming and Moving Files in the Repo 215

Contents in Detail XV

Viewing the Commit Log 216

Recovering Old Changes 217

Undoing Uncommitted Local Changes 218

Unstaging a Staged File 218

Rolling Back the Most Recent Commits 218

Rolling Back to a Specific Commit for a Single File 219

Rewriting the Commit History 220

GitHub and the git push Command 221

Pushing an Existing Repository to GitHub 222

Cloning a Repo from an Existing GitHub Repo 222

Summary 223

13

MEASURING PERFORMANCE AND BIG O

ALGORITHM ANALYSIS 225

The timeit Module 226
The cProfile Profiler 228

Big O Algorithm Analysis 230

Big O Orders 230

A Bookshelf Metaphor for Big O Orders 231

Big O Measures the Worst-Case Scenario 235

Determining the Big O Order of Your Code 237

Why Lower Orders and Coefficients Don't Matter 238

Big O Analysis Examples 239

The Big O Order of Common Function Calls 242

Analyzing Big O at a Glance 243

Big O Doesn't Matter When n Is Small, and n Is Usually Small 244

Summary 244

14

PRACTICE PROJECTS 247

The Tower of Hanoi 248

The Output 249

The Source Code 250

Writing the Code 252

Four-in-a-Row 259

The Output 259

The Source Code 260

Writing the Code 264

Summary 271

PART III: OBJECT-ORIENTED PYTHON 273

15

OBJECT-ORIENTED PROGRAMMING AND CLASSES 275

Real-World Analogy. Filling Out a Form 276

Creating Objects from Classes 278

XVI Contents in Detail

Creating a Simple Class: WizCoin 279

Methods, _init_(), and self 280

Attributes 282

Private Attributes and Private Methods 282

The type() Function and qualname Attribute 284

Non-OOP vs. OOP Examples: Tic-Tac-Toe 285

Designing Classes for the Real World Is Hard 290

Summary 291

16
OBJECT-ORIENTED PROGRAMMING AND INHERITANCE 293

How Inheritance Works 294

Overriding Methods 296

The super() Function 297

Favor Composition Over Inheritance 299

Inheritance's Downside 301

The isinstance() and issubclassQ Functions 303

Class Methods 304

Class Attributes 306

Static Methods 306

When to Use Class and Static Object-Oriented Features 307

Object-Oriented Buzzwords 307

Encapsulation 307

Polymorphism 308

When Not to Use Inheritance 308

Multiple Inheritance 309

Method Resolution Order 311

Summary 312

17

PYTHONIC OOP: PROPERTIES AND DUNDER METHODS 315

Properties 316

Turning an Attribute into a Property 316

Using Setters to Validate Data 319

Read-Only Properties 320

When to Use Properties 322

Python's Dunder Methods 322

String Representation Dunder Methods 323

Numeric Dunder Methods 325

Reflected Numeric Dunder Methods 328

In-Place Augmented Assignment Dunder Methods 330

Comparison Dunder Methods 332

Summary 337

INDEX 339

Contents in Detail XVM

