Handbook of Analytical Separations

SEPARATION METHODS IN DRUG SYNTHESIS AND PURIFICATION

VOLUME 8

Second Edition

Edited by

KLÁRA L. VALKÓ
Bio-Mimetic Chromatography Ltd
Business & Technology Center
Bessemer Drive, Stevenage
Herts, United Kingdom

ELSEVIER
Contents

Contributors xi

Preface xiii

1. Comparison of various modes and phase systems for analytical HPLC 1

Pavel Jandera

1.1 Fundamentals of high-performance liquid chromatography 1
1.2 High-performance liquid chromatography separation media 11
1.3 Separation modes in high-performance liquid chromatography 24
1.4 Method development and optimization of separation conditions 58

References 84

2. Fast-generic HPLC methods 93

Ian M. Mutton

2.1 Introduction 93
2.2 Theory 94
2.3 Strategy for production of fast gradients 96
2.4 Fast gradients in practice 105
2.5 Conclusions 108

References 108

3. Advances in capillary electrochromatography 113

José Luís Dores-Sousa, Jelle De Vos, Debby Mangelings and Sebastiaan Eeltink

3.1 Introduction 113
3.2 The electroosmotic flow 115
3.3 Separation efficiency and kinetic performance limits 118
3.4 Retention 122
3.5 Instrument setup 124
3.6 Column technology 126
3.7 (Bio)pharmaceutical and biochemical applications 129
3.8 Concluding remarks 134

List of abbreviations and symbols 134

Acknowledgements 135

References 135
4. Coupled chromatography—mass spectrometry techniques for the analysis of combinatorial libraries 143

Steve Lane

4.1 Introduction 143
4.2 LC/MS analysis of high-throughput parallel synthesis libraries 148
4.3 Example for monitoring the rehearsal phase of the synthesis of a solid-phase library 157
4.4 LC/UV/MS as a prescreen for Autoprep solution phase 158
4.5 Assisted automated LC/MS analysis 162
4.6 The analysis of split-pool combinatorial libraries 164
4.7 Industrialization of the process 175
4.8 Conclusions and future 191
References 193

5. Experimental design-based optimization strategies for chromatographic and capillary electrophoretic separations 197

Johan Viaene and Yvan Vander Heyden

5.1 Introduction 197
5.2 Main factors affecting separation 200
5.3 Responses and response functions 200
5.4 Univariate optimization strategies 205
5.5 Simplex sequential approach 208
5.6 Factorial methods 213
5.7 Multicriteria decision-making methods 265
5.8 Peculiarities of optimizing separations: optimizing resolution 270
5.9 Automating the entire process: expert systems and knowledge-based systems 272
5.10 Transfer of optimized capillary electrophoresis methods 273
5.11 Conclusions 274
References 274

6. Computer-aided HPLC method development for quality control of complex drug mixtures — An application example for DryLab 277

Halina Katsialevich, Hans-Jürgen Rieger, Imre Molnár and Arnold Zöldhegyi

6.1 Introduction 278
6.2 Experimental part 281
6.3 Method development using the DryLab4 software 285
7. The flexible application of automated preparative purification platforms within drug discovery
Jennifer Kingston, Neil Sumner, Katie Proctor and Elisabetta Chiarpelin

7.1 Introduction
7.2 Reverse-phase high-performance liquid chromatography as a robust chromatographic tool
7.3 HPLC purification within drug discovery
7.4 Evolution of supercritical fluid chromatography as a robust purification platform
7.5 Multi-parallel synthesis purification processes at AstraZeneca
7.6 Flexible use of HPLC and SFC as orthogonal separation techniques
7.7 Conclusions

8. Strategies for the development of process chromatography as a unit operation for the pharmaceutical industry
Drew Katti

8.1 Introduction
8.2 The process development cycle
8.3 Chromatographic unit operations
8.4 Discovery experiment stage
8.5 Development stage
8.6 Modes of chromatography
8.7 Overloaded elution chromatography-isocratic mode
8.8 Economics of overloaded elution chromatography
8.9 Simulated moving bed chromatography
8.10 Chromatography techniques make a comeback
8.11 Safety and environmental
8.12 Regulatory and compliance
8.13 Conclusion
List of symbols
Acknowledgements
References
9. Recent developments in liquid and supercritical fluid chromatographic enantioseparations 453
Debby Mangelings, Sebastiaan Eeltink and Yvan Vander Heyden

9.1 Stereochemistry in a pharmaceutical environment 453
9.2 Enantioseparations of racemates in liquid chromatography and sub/supercritical fluid chromatography 454
9.3 Scope and aims 458
9.4 Direct enantioseparations with chiral mobile phase additives 458
9.5 Direct enantioseparations: chiral stationary phases 459
9.6 Conclusions 503
Abbreviations 505
References 506

10. Basis and pharmaceutical applications of thin-layer chromatography 523
Huba Kalász, Mária Báthori and Klára L. Valkó

10.1 Planar chromatography 523
10.2 The components of the planar stationary phase 535
10.3 Mobile phases for thin-layer chromatography 546
10.4 The chambers 548
10.5 Detection 555
10.6 Application of thin-layer chromatography in pharmaceutical and forensic analysis 566
10.7 Future developments, Quo Vadis thin-layer chromatography 577
Acknowledgements 578
References 578

11. Recent advances in quantitative structure—retention relationships 587
Roman Kaliszanz

11.1 Introduction 587
11.2 Strategy of quantitative structure—retention relationship research 589
11.3 Retention prediction 601
11.4 Molecular mechanism of retention in view of quantitative structure—retention relationship 608
11.5 Chromatographic methods of determination of hydrophobicity 613
11.6 Applications of quantitative structure—retention relationship in molecular pharmacology and rational drug design 616
12. Capillary electrophoresis for drug analysis and physicochemical characterization 633
Susana Amézqueta, Xavier Subirats, Elisabet Fuguet, Clara Ràfols and Martí Rosés
12.1 Introduction to capillary electrophoresis 633
12.2 Buffers in capillary electrophoresis 636
12.3 Capillary zone electrophoresis 640
12.4 Nonaqueous capillary electrophoresis 649
12.5 Introduction to micellar electrokinetic chromatography 657
12.6 Introduction to microemulsion and liposome electrokinetic chromatography 660
References 663

13. Application of HPLC measurements for the determination of physicochemical and biomimetic properties to model in vivo drug distribution in support of early drug discovery 667
Klára L. Valkó
13.1 Introduction 667
13.2 Measurements of compound lipophilicity using chromatography 669
13.3 Measurement of membrane binding by immobilized artificial membrane high-performance liquid chromatography 689
13.4 Measurement of drug-protein binding constants by high-performance liquid chromatography 695
13.5 Measurements of solubility by high-performance liquid chromatography 702
13.6 Measurement of acid-base character by high-performance liquid chromatography 710
13.7 Measurements of H-bond acidity, basicity and polarizability/dipolarity by high-performance liquid chromatography 717
13.8 Application of chromatographic properties in drug discovery 735
13.9 Conclusion 747
References 748

Index 759