Mathematics of Harmony as a New Interdisciplinary Direction and "Golden" Paradigm of Modern Science

Volume 1
The Golden Section, Fibonacci Numbers, Pascal Triangle, and Platonic Solids
Contents

Preface to the Three-Volume Book xi
Introduction xxv
About the Author xxix
Acknowledgments xxxi

Chapter 1. The Golden Section: History and Applications 1

1.1 The Idea of the Universal Harmony in Ancient Greek Science 1
1.2 The Golden Section in Euclid’s Elements 7
1.3 Proclus Hypothesis and New View on Classic Mathematics and Mathematics of Harmony 14
1.4 Some Simplest Mathematical Properties of the Golden Ratio 21
1.5 The Golden Ratio and Chain Fractions 24
1.6 Equations of the Golden Proportion of the Nth Degree 26
1.7 Geometric Figures Associated with the Golden Section 30
1.8 The Golden Section in Nature 40
1.9 The Golden Section in Cheops Pyramid 43
1.10 The Golden Section in Ancient Greek Culture 48
1.11 Golden Section in the Art of the Renaissance 52

Chapter 2. Fibonacci and Lucas Numbers 59
2.1 A History of the Fibonacci Numbers 59
2.2 The Sums of the Consecutive Fibonacci Numbers 66
2.3 Cassini’s Formula 69
2.4 Lucas Numbers 71
2.5 Binet’s Formulas 76
2.6 Steinhaus’s “Iron Table” 80
2.7 Pythagorean Triangles and Their Presentation Through Fibonacci and Lucas Numbers 82
2.8 Fibonacci Numbers in Nature 87
2.9 Fibonacci Numbers and Solution of Hilbert 10th Problem 92
2.10 Turing and Fibonacci Numbers 95
2.11 Role of the Fibonacci Numbers Theory in Modern Mathematics 98

Chapter 3. Pascal Triangle, Fibonacci p-Numbers and Golden p-Proportions 103
3.1 Binomial Theorem 103
3.2 Pascal Triangle 104
3.3 Diagonal Sums of Pascal’s Triangle and Fibonacci p-Numbers 107
3.4 The Extended Fibonacci p-Numbers 116
3.5 Generalization of the Golden Section Problem 118
3.6 Algebraic Equations for the Golden p-Proportion and Vieta’s Formulas 121
3.7 Binet’s Formulas for the Fibonacci p-Numbers 126
3.8 Binet’s Formulas for the Lucas p-Numbers 127