Contents

List of contributors xi
Preface xiii

1. Introduction 1

David C. Tanner and Christian Brandes

Definition of a fault surface, fault kinematics and displacement 5
References 9

2. Fault mechanics and earthquakes 11

Christian Brandes and David C. Tanner

2.1 Introduction 12
2.2 Fractures 13
2.3 From intact rocks to opening-mode fractures to faults 16
 2.3.1 Griffith cracks 16
 2.3.2 The Coulomb failure criterion and the Mohr circle 18
 2.3.3 Hydrofractures 22
 2.3.4 Stress state and dynamic fault classification of Anderson 23
 2.3.5 Wallace-Bott hypothesis 24
2.4 Fault zone processes and structure 25
 2.4.1 The fault zone 25
 2.4.2 Principal slip surface 30
 2.4.3 Pseudotachylites 31
 2.4.4 Strain hardening/strain softening of the fault core 32
 2.4.5 Fault surface geometry and roughness 33
 2.4.6 The process zone 35
 2.4.7 Deformation bands 36
 2.4.8 Fault groups and their characterization 41
 2.4.9 Fault evolution with depth 44
 2.4.10 Fault-related folding 44
2.5 Fault movement and seismicity 46
 2.5.1 Fault rupture 47
 2.5.2 Fault creep 56
 2.5.3 Slow earthquakes 58
2.5.4 The Cosserat theory as a concept to describe fault and deformation band behaviour 58
2.5.5 Large overthrusts and the effect of fluid pressure 60
2.6 Faults in soft-sediments 62
References 64

3. Fault detection 81

David C. Tanner, Hermann Buness, Jan Igel, Thomas Günther, Gerald Gabriel, Peter Skiba, Thomas Plenefisch, Nicolai Gestermann and Thomas R. Walter

3.1 Introduction 82
3.2 Active seismsics 84
3.2.1 Seismic method 84
3.2.2 Resolution 84
3.2.3 Seismic imaging of faults 85
3.2.4 Imaging of faults — 2-D and 3-D 88
3.2.5 Fracture detection 89
3.3 Ground-penetrating radar (GPR) 91
3.3.1 Principle 92
3.3.2 Imaging of faults 93
3.3.3 Examples 95
3.4 Electrical resistivity tomography (ERT) 97
3.4.1 Background 97
3.4.2 Large-scale fault imaging with structural information 101
3.5 Gravimetry and magnetics 103
3.5.1 Gravity and magnetic anomalies — definition and instruments for measurement 103
3.5.2 Gravity and magnetic anomalies - interpretation 105
3.6 Seismology 111
3.6.1 Detecting and illuminating faults by earthquake hypocentre distribution 112
3.6.2 Describing faults by interpretation of source mechanisms 117
3.6.3 Examples of detecting faults using hypocentre distributions and focal mechanisms 123
3.7 Remote sensing 127
3.7.1 History and background of remote sensing 127
3.7.2 Instruments and data 130
3.7.3 Fault mapping and kinematics 132
3.7.4 Summary and outlook 139
References 139

4. Numerical modelling of faults 147

Andreas Henk

4.1 Introduction 147
4.2 Numerical methods for hydromechanical fault zone modelling 148
4.3 Material parameters of fault zone rocks required for modelling 151
5. Faulting in the laboratory

Andre Niemeijer, Åke Fagereng, Matt Ikari, Stefan Nielsen and Ernst Willingshofer

5.1 Fault friction in the quasi-static regime
5.1.1 Laboratory measurements of friction
5.1.2 General observations of steady state friction
5.1.3 Rate-and-state friction
5.1.4 Observations of variations in velocity dependence of friction at room temperature
5.1.5 Strength recovery (healing)
5.1.6 Effect of hydrothermal conditions on velocity dependence of friction

5.2 Fault friction in the dynamic regime
5.2.1 Dynamic weakening mechanisms in gouges and solid rocks
5.2.2 Melt lubrication
5.2.3 Flash heating and flash weakening
5.2.4 Thermal pressurization
5.2.5 Thermal decomposition and pressurization
5.2.6 Fluid phase changes
5.2.7 Powder lubrication
5.2.8 Activation of crystal-plastic (viscous) mechanisms
5.2.9 Dynamic rupture in laboratory experiments
5.2.10 Frontiers

5.3 Faults in scaled physical analogue models
5.3.1 Introduction
5.3.2 Scaling tectonic faulting to the laboratory
5.3.3 Rock analogue materials and their bulk properties
5.3.4 Quantifying stress and strain in analogue models
5.3.5 Fault formation in analogue models
5.3.6 Faulting in single and multi-layer systems
5.3.7 Frontiers

5.4 Microstructures of laboratory faults
5.4.1 Introduction of localization features
5.4.2 Development of gouge microstructure with strain/displacement
5.4.3 Distribution of slip on structural elements
5.4.4 Role of Y or B shears in generation of unstable slip
Contents

5.4.5 Clay-bearing versus non-clay bearing 207
5.4.6 Frontiers 208
References 209

6. The growth of faults

Andrew Nicol, John Walsh, Conrad Childs and Tom Manzocchi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>221</td>
</tr>
<tr>
<td>6.2 Geometric indicators of fault growth</td>
<td></td>
</tr>
<tr>
<td>6.2.1 Conceptual ‘ideal isolated fault’ model</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Mechanical layering and displacement variations</td>
<td></td>
</tr>
<tr>
<td>6.2.3 ‘Isolated’ fault lateral displacement profiles</td>
<td></td>
</tr>
<tr>
<td>6.2.4 Interaction and lateral displacement profiles</td>
<td></td>
</tr>
<tr>
<td>6.2.5 Relay zones and lateral interactions</td>
<td></td>
</tr>
<tr>
<td>6.2.6 Damage zones and lateral growth</td>
<td></td>
</tr>
<tr>
<td>6.3 Direct kinematic indicators of fault growth</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Displacement through time</td>
<td></td>
</tr>
<tr>
<td>6.3.2 Fault lateral propagation</td>
<td></td>
</tr>
<tr>
<td>6.3.3 Fault upward propagation and reactivation</td>
<td></td>
</tr>
<tr>
<td>6.4 Displacement-length relations and fault growth</td>
<td></td>
</tr>
<tr>
<td>6.5 End-member fault growth models</td>
<td></td>
</tr>
<tr>
<td>6.6 Earthquakes and incremental growth</td>
<td></td>
</tr>
<tr>
<td>6.7 Concluding remarks</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

7. Direct dating of fault movement

Sumiko Tsukamoto, Takahiro Tagami and Horst Zwingmann

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Dating of authigenic clay minerals in brittle faults</td>
<td>257</td>
</tr>
<tr>
<td>7.1.1 Outline of the concept and the analytical method</td>
<td>257</td>
</tr>
<tr>
<td>7.1.2 K-Ar and 40Ar/39Ar clay dating principles</td>
<td>259</td>
</tr>
<tr>
<td>7.1.3 Fault gouge dating constraints</td>
<td>259</td>
</tr>
<tr>
<td>7.1.4 Authigenic clay gouge age interpretation</td>
<td>261</td>
</tr>
<tr>
<td>7.1.5 Case studies</td>
<td>263</td>
</tr>
<tr>
<td>7.2 Dating methods based on thermal reset</td>
<td>266</td>
</tr>
<tr>
<td>7.2.1 Outline of the method</td>
<td>266</td>
</tr>
<tr>
<td>7.2.2 Fission track dating</td>
<td>267</td>
</tr>
<tr>
<td>7.2.3 (U-Th)/He dating</td>
<td>268</td>
</tr>
<tr>
<td>7.2.4 Trapped charge dating</td>
<td>269</td>
</tr>
<tr>
<td>7.2.5 Case studies</td>
<td>273</td>
</tr>
<tr>
<td>References</td>
<td>278</td>
</tr>
</tbody>
</table>
8. Fault sealing

Michael Kettermann, Luca Smeraglia, Christopher K. Morley, Christoph von Hagke and David C. Tanner

8.1 Introduction

8.2 How does a fault seal?

8.3 General tools for fault seal analysis
 8.3.1 2D juxtaposition and Allan maps
 8.3.2 Juxtaposition diagrams

8.4 Fault sealing in siliciclastic rocks
 8.4.1 Clay smear
 8.4.2 Deformation bands
 8.4.3 Fault seal predicting algorithms
 8.4.4 Fault permeability from fault seal algorithms
 8.4.5 Clay injection and mechanical clay injection potential (MCIP)
 8.4.6 Assessing fault reactivation and seal breach risk
 8.4.7 Analogue and numerical experiments of fault clay smear

8.5 Fault sealing in carbonates
 8.5.1 Introduction
 8.5.2 Fault processes in low-porosity carbonates
 8.5.3 Faulting processes in high-porosity carbonates
 8.5.4 Carbonate faults cutting through heterogeneous stratigraphy
 8.5.5 Normal, thrust, and strike-slip fault architectures in carbonates
 8.5.6 Fault permeability, fluid circulation, and seal in carbonate hydrocarbon reservoirs

8.6 Evaporites and fault seals

8.7 Case studies of fault seal
 8.7.1 The Molasse Basin in Germany and the Rhenish Massif
 8.7.2 Inboard area of the Baram Delta Province, NW Borneo
 8.7.3 Clay smears in aquifers of the Lower Rhine Embayment

References

Conclusions

Index