Aitber Bizhanov · Valentina Chizhikova

Agglomeration in Metallurgy

Springer
Contents

1 Sinter Production .. 1
 1.1 General Information About the Sintering Process 1
 1.2 Raw Materials of the Sintering Process 7
 1.3 Preparation of Charge Components for Sintering (Crushing,
 Dosing, Mixing, Pelletizing) 13
 1.3.1 Dosing of the Components of the Sinter Charge 14
 1.3.2 Pelletizing of the Sinter Charge 16
 1.4 Mass Exchange Processes in the Sintering Layer 42
 1.4.1 Chemical Reactions with Participation of Solid Phases ... 43
 1.4.2 Processes in the Formation of the Liquid Phase During
 Melting ... 56
 1.4.3 Processes During Solidification (Crystallization)
 of the Melt ... 57
 1.5 Heat Transfer in the Sintering Layer 58
 1.5.1 General Information on the Sintering Heat Exchange 58
 1.5.2 Zonal Heat Balances of Sintered Layer 61
 1.5.3 Mathematical Model of Heat Exchange
 During Sintering ... 65
 1.5.4 Three-Dimensional Mathematical Model of the Sintering
 Process .. 67
 1.5.5 Calculation of the Specific Yield of the Sintering Gas ... 71
 1.5.6 Vertical Sintering Speed 72
 1.6 The Gas Dynamics of the Sintering Process 73
 1.6.1 The Basic Equation of Dynamics of the Porous Layer 73
 1.6.2 Gas-Dynamic Resistance Coefficients 74
 1.6.3 Porosity of the Sintering Layer 76
 1.6.4 Gas Dynamics of Sintering Technology 77
 1.6.5 Sinter Machine Performance 80
 1.6.6 Ways to Improve the Performance of Sintering
 Machines ... 81
1.7 Quality of the Sinter in Terms of Influence on the Performance of Blast Furnace Smelting ... 88
 1.7.1 Sinter Quality Indicators ... 88
 1.7.2 Influence of Sinter Quality on Gas-Dynamic Parameters of Blast Furnace Smelting ... 90
 1.7.3 Requirements for Sinter Quality .. 93
 1.7.4 Basic Solutions to Improve Quality of Sinter 99
 1.7.5 Technology of Sintering Under Pressure .. 116
1.8 Energy Efficiency of the Sintering Technology 118
1.9 Environmental Aspects of Sinter Production (Best Available Technologies) ... 123
 1.9.1 Thermodynamic Modeling of Emissions in the Sintering Process 124
 1.9.2 Characteristics of Emissions from Sinter Production 126
 1.9.3 Influence of Technological Factors on the Emission of Pollutants During Sintering ... 128
 1.9.4 Environmental Requirements as the Main Priority of Production Modernization ... 133
 1.9.5 Waste Gas Recirculation Concept .. 148
 1.9.6 Recommendations on the Best Available Technologies (BAT) in Sintering ... 159
 1.9.7 Sinter Plant Without Chimney ... 161
References .. 165

2 Pellet Production .. 171
 2.1 General Information About Pellet Production .. 171
 2.1.1 Technological Scheme of the Production of Pellets 171
 2.1.2 Formation of Raw Pellets ... 174
 2.1.3 Strengthening of Raw Pellets ... 176
 2.2 Charge Components for the Production of Pellets 179
 2.3 Formation of Raw Pellets ... 184
 2.3.1 Interaction Between Wetted Particles During the Formation of a Raw Pellet ... 184
 2.3.2 The Nature of the Action of Binding Additives in the Strengthening of Raw Pellets ... 187
 2.3.3 The Effectiveness of Various Strengthening Additives in Pelletizing ... 189
 2.4 Cold-Bonded Pellet Production .. 200
 2.4.1 General Information About Cold Agglomeration 200
 2.4.2 Strengthening Mechanism of Portland Cement Binders 201
 2.4.3 Cold Strengthening Under Normal Conditions 203
 2.4.4 Cold Agglomeration at Moderate Temperatures 205
2.4.5 Cold Agglomeration with Accelerated Strengthening ... 206
2.4.6 Advantages of Cold Agglomeration Method ... 208

2.5 Strengthening Pellets with Thermal Methods ... 208
2.5.1 Phenomenology of Mass Transfer Processes During Heat Treatment of Pellets ... 210
2.5.2 Simulation of Mass Transfer Processes During Heat Treatment of Pellets ... 212
2.5.3 Pellet Roasting as a Complicated Case of Sintering ... 226
2.5.4 The Pellet Macrostructure and Strength ... 247

2.6 Metallurgical Properties of Iron Ore Pellets ... 251
2.6.1 Pellet Quality Test Methods ... 251
2.6.2 Quality Requirements for Pellets ... 254
2.6.3 Basic Solutions for Improving the Quality of Pellets ... 258

2.7 Resource Saving in the Production of Pellets ... 268
2.7.1 Resource Consumption in the Production of Pellets ... 268
2.7.2 Energy Efficiency of Conveyor Machines as Units for Pellets Roasting ... 269
2.7.3 Best Available Technologies (BAT) in the Production of Pellets Aimed at Improving Energy Efficiency ... 272

2.8 Environmental Aspects of Pellet Production ... 274
2.8.1 General Characteristics of Emissions to the Environment in the Production of Pellets ... 274
2.8.2 Sources of Emissions from Technological Operations in the Production of Pellets ... 276
2.8.3 The Best Available Technology in the Production of Pellets ... 280

References ... 282

3 Briquetting ... 287
3.1 General Information on Briquetting of Natural and Anthropogenic Raw Materials ... 287

3.2 History of the Industrial Briquetting in Ferrous Metallurgy ... 291
3.2.1 Beginning of the Twentieth Century—The 20s of the Twentieth Century ... 297
3.2.2 30–50s of the Twentieth Century ... 304
3.2.3 60–70s of the Twentieth Century ... 307
3.2.4 The 80s—The End of the Twentieth Century ... 314
3.2.5 Twenty-First Century ... 321

3.3 Basic Materials for Briquetting ... 328
3.3.1 Mining and Beneficiation of Ores ... 328
3.3.2 Sinter and Pellet Production ... 330
3.3.3 Coke Production ... 330
3.3.4 Blast Furnace Production ... 331
3.3.5 Steelmaking ... 331
3.3.6 Rolling Production ... 332
3.3.7 Ferroalloy Production 333
3.3.8 Direct Iron Production 334

3.4 Basic Industrial Technologies of Briquetting in Ferrous Metallurgy ... 334
3.4.1 Briquetting Using Roller Presses 334
3.4.2 Vibropressing for Briquetting 342
3.4.3 Stiff Vacuum Extrusion Briquetting Technology 351

3.5 Requirements to Metallurgical Properties of Briquettes ... 370
3.5.1 Briquetting of Natural and Anthropogenic Materials in Blast Furnace (BF) Production 370
3.5.2 Briquetting of Natural and Anthropogenic Raw Materials for Ferroalloy Production 397
3.5.3 Briquetting in Direct Reduced Iron (DRI) Production 428

References ... 441

4 Best Available Technologies for Agglomeration of the Raw Materials for Blast Furnaces 449
4.1 Production of Sinter as a BAT 449
4.2 Production of Pellets as a BAT 451
4.3 Stiff Extrusion Briquetting as a BAT 452
4.4 Comparative Analysis of Technologies for Agglomeration of the Raw Materials for Blast Furnace 453

References ... 454