Green Synthetic Processes and Procedures

Edited by

Roberto Ballini
University of Camerino, Italy
Email: roberto.ballini@unicam.it
Contents

Chapter 1 Sustainability of Green Synthetic Processes and Procedures
István T. Horváth and Edit Cséfalvay

1.1 Development and Definition of Green Chemistry 1
1.2 Development and Definition of Sustainability 2
 1.2.1 Definition of Sustainable Chemistry 5
1.3 Metrics for Chemistry 7
1.4 Metrics for Green Chemistry 7
1.5 Metrics for Sustainability 8
 1.5.1 Ethanol Equivalent 9
 1.5.2 Atom Equivalent 16
References 17

Chapter 2 One-pot Organic Reactions
Wei Zhang

2.1 Introduction 20
2.2 Cascade Reactions 22
 2.2.1 Cascade Ionic Reactions 22
 2.2.2 Cascade Transition Metal-catalyzed Reactions 24
 2.2.3 Cascade Radical Reactions 25
 2.2.4 Cascade Pericyclic Reactions 28
2.3 Stepwise Reactions 29
 2.3.1 Stepwise Non-catalytic Reactions 29
 2.3.2 Stepwise Catalytic Reactions 31
 2.3.3 Stepwise Cycloaddition Reactions 32
Chapter 3 Application of Step, Cumulative, and Global E-factor and Process Mass Intensity Metrics to Gauge Synthesis Efficiency: L-DOPA and Apixaban Pharmaceutical Examples

John Andraos

3.1 Introduction 39
3.2 L-DOPA 41
 3.2.1 Hofmann-La Roche Process 41
 3.2.2 Monsanto Process 44
 3.2.3 Ajinomoto Process 44
3.3 Apixaban 45
3.4 Conclusion 51
3.5 Appendix 51
References 52

Chapter 4 Flow Chemistry in Drug Discovery

J. Alcazar, A. de la Hoz and A. Diaz-Ortiz

4.1 Introduction 53
4.2 Flow Chemistry in Drug Discovery and Development 58
 4.2.1 Hit Finding and Hit to Lead 59
 4.2.2 Lead Optimization 65
 4.2.3 New Molecular Entities and Active Pharmaceutical Ingredients 68
4.3 Conclusions and Outlook 75
References 75

Chapter 5 Sustainable Batch or Continuous-flow Preparation of Biomass-derived Fuels Using Sulfonated Organic Polymers

Valeria Trombettoni, Filippo Campana, Assunta Marrocchi and Luigi Vaccaro

5.1 Introduction 79
 5.1.1 Biodiesel 80
 5.1.2 Heterogeneous Organic Polymer-based Acid Catalysts 82
 5.1.3 Flow Technology 85
Chapter 6 Renewable Starting Materials, Biocatalysis, and Multicomponent Reactions: A Powerful Trio for the Green Synthesis of Highly Valued Chemicals

L. Banfi, C. Lambruschini, L. Moni and R. Riva

6.1 Introduction
6.2 Coupling Multicomponent Reactions with Biocatalysis
 6.2.1 General Remarks
 6.2.2 Biocatalytic Preparation of Inputs for Multicomponent Reactions
 6.2.3 Biocatalytic Transformation of Multicomponent Reaction Products
 6.2.4 Biocatalytic Multicomponent Reactions
6.3 Application of Multicomponent Reactions to Renewable Feedstocks
 6.3.1 Biobased Diols
 6.3.2 Furfural and Derivatives
 6.3.3 Levulinic Acid
6.4 Lipids
6.5 Concluding Remarks
References

Chapter 7 Green Synthetic Procedures under Hydrodynamic and Acoustic Cavitation

Giancarlo Cravotto, Silvia Tagliapietra and Zhilin Wu

7.1 Introduction
7.2 Hydrodynamic Cavitation for Green Organic Synthesis
 7.2.1 Synthesis of Biodiesel (Transesterification and Esterification)
 7.2.2 Epoxidation of Oil and Fatty Acid Methyl Esters
 7.2.3 Deep Desulphurisation of Liquid Fuel
 7.2.4 Cavitational Switching
 7.2.5 Oxidation of Hydrocarbons
Chapter 8 Mechanochemical Synthesis of Biologically Relevant Heterocycles

Marco Leonardi, Mercedes Villacampa and J. Carlos Menéndez

8.1 Introduction 175

8.2 Mechanochemical Synthesis of Five-membered Heterocycles and Their Benzo-fused Derivatives 176
 8.2.1 Furans 176
 8.2.2 Thiophenes 176
 8.2.3 Pyrroles 177
 8.2.4 Indoles 178
 8.2.5 Five-membered Rings with Two Heteroatoms 179
 8.2.6 Benzo-fused Five-membered Rings with Two Heteroatoms 180
 8.2.7 Triazoles 181

8.3 Mechanochemical Synthesis of Six-membered Heterocycles and Their Benzo-fused Derivatives 181
 8.3.1 1,4-Dihydropyridines 181
 8.3.2 Pyrimidines 182
 8.3.3 Quinolines: The Mechanochemical Povarov Reaction 183
 8.3.4 Tetrahydroisoquinolines 184
 8.3.5 Pyran and Fused Pyran Derivatives 184
 8.3.6 Quinoxaline and Its Fused Derivatives 185
 8.3.7 Benzothiazines 186

8.4 Mechanochemical Synthesis of Complex Fused or Bridged Heterocycles 186
 8.4.1 Bridged Diazocines 186
 8.4.2 Imidazo[1,2-α]pyridines 187
 8.4.3 Pyrano[2,3-c]pyrazoles 187
8.4.4 Indeno[1,2-b]pyrroles and Indeno[1,2-d]imidazoles 188
8.5 Conclusion 188
Acknowledgements 188
References 189

Chapter 9 New and Up-and-coming Perspectives for Unconventional Chemistry: From Molecular Synthesis to Hybrid Materials by Mechanochemistry 192
Clarence Charnay, Andrea Porcheddu, Francesco Delogu and E. Colacino

9.1 Introduction 193
9.2 Influence of Milling on Polymorphism and Amorphization of Pharmaceutical Materials: The Case of Indomethacin 193
9.3 Pharmaceutical Co-crystals and Inclusion Complexes 196
9.4 Hybrid Organic–Inorganic Materials for Pharmaceutical and Biomedical Applications 201
9.5 Conclusions 208
Acknowledgements 209
References 209

Chapter 10 Microwave Dielectric Heating for Solvent-free Organic Transformations 216
Elena Cini and Maurizio Taddei

10.1 Introduction 216
10.2 Alcohol Oxidation 217
10.3 Alkylation Reactions 219
10.3.1 Alkylation with Alkyl Halides 219
10.3.2 Alkylation by Ring-opening Reactions 220
10.3.3 Alkylation with Alcohols 221
10.4 Application of SFMAS to Carbonyl Chemistry 223
10.4.1 Imine Synthesis 223
10.4.2 Claisen–Schmidt and Knoevenagel Reactions 224
10.4.3 Other Nucleophilic Additions on Aldehydes and Ketones 226
10.4.4 Conjugate Addition: Michael and Related Reactions 226
10.4.5 Mannich and Mannich-type Reactions 229
Chapter 11 Advances in Catalysis for More Sustainable Synthesis of Phenolics

11.1 Phenol Methylation with Methanol: The First Industrial Example of Green Functionalisation of Phenol
 11.1.1 Phenol C-methylation with Methanol: Classes of Catalysts
 11.1.2 Phenol C-methylation with Methanol: The Reaction Mechanism Revisited
 11.1.3 Phenolic Alkylation with Organic Carbonates

11.2 Production of Vanillin: Various Industrial Routes and Sources

11.3 Hydroxytyrosol: The Continuous Pursuit for Sustainable Production

11.4 1,2-Methylendioxybenzene and Related Compounds

11.5 Conclusions

References

Chapter 12 Transition Metal Catalysis in Micellar Media: Much More Than a Simple Green Chemistry Promise

12.1 Introduction

12.2 Early Studies on Enantioselective Oxidation

12.3 Oxidation in Micellar Media

12.4 Other Reactions

12.5 Designer Surfactants and Metallosurfactants

12.6 Importance of Catalyst–Surfactant Interactions
12.7 Improvement of the E-factor and Practical Applications

12.8 Conclusions

References

Chapter 13 Supported ILs and Materials Based on ILs for the Development of Green Synthetic Processes and Procedures

Silvia Montolio, Belén Altava, Eduardo García-Verdugo and Santiago V. Luis

13.1 Introduction

13.2 Synthesis and Structures of PILs and Related IL-like Polymeric Phases

13.3 Physico-chemical Characteristics of PILs and Related IL-like Polymeric Phases

13.3.1 Polarity

13.3.2 Swelling

13.3.3 Thermal Behavior

13.4 Application of PILs and Related IL-like Polymeric Phases in Catalytic Processes

13.4.1 Catalytic Systems Not Involving Metallic Species

13.4.2 Catalytic Systems Involving Metallic Species

13.5 Multicatalytic Systems and Continuous Flow Processes

13.6 Outlook and Prospectives

References

Chapter 14 CO₂ and Organic Carbonates for the Sustainable Valorization of Renewable Compounds

Maurizio Selva, Alvise Perosa, Giulia Fiorani and Lisa Cattelan

14.1 Introduction

14.2 Carbon Dioxide

14.2.1 Catalytic Hydrogenation of CO₂

14.2.2 Photocatalysis for Hydrogen Production and CO₂ Reduction

14.2.3 CH-carboxylation Reactions with CO₂

14.2.4 Synthesis of Oleochemical Carbonates from CO₂

14.2.5 The Diagonal Approach
Chapter 15 Transition Metal-catalysed Nucleophilic Additions of Terminal Alkynes in Water: Development and Synthetic Utility
Zoe Hearne, Sabrina Keys and Chao-Jun Li

15.1 Introduction
15.1.1 The Development of Transition Metal-catalysed Nucleophilic Addition of Terminal Alkynes in Water
15.1.2 Relative Reactivity of Various Electrophiles
15.1.3 Transition-metal Acetylides: Synthesis and Reactivity
15.1.4 Chapter Scope
15.2 Addition of Terminal Alkynes to Carbonyl Derivatives (Class I)
15.2.1 Addition of Terminal Alkynes to Aldehydes and Ketones
15.2.2 Addition of Terminal Alkynes to Acid Chlorides
15.3 Addition of Terminal Alkynes to Imines and Iminium Ions (Class II)
15.3.1 Addition of Terminal Alkynes to Imines
15.3.2 Addition of Terminal Alkynes to Iminium Ions
15.3.3 Addition of Terminal Alkynes to Nitrones
15.3.4 A³ Couplings with Multiple Additions
15.3.5 Tandem Reactions of Terminal Alkynes with Imine and Iminium Ions
15.3.6 Mechanistic Discussion of the A³ Coupling Reaction
15.3.7 Synthetic Utility of Propargylic Amines
15.4 Addition of Terminal Alkynes to Conjugated Electrophiles (Class III) 383
 15.4.1 Addition of Terminal Alkynes to α,β-Enones 383
 15.4.2 Addition of Terminal Alkynes to Meldrum’s Acid Diesters 387
 15.4.3 Addition of Terminal Alkynes to α,β-Ynoates 391
 15.4.4 Addition of Terminal Alkynes to α,β-Enals 391
 15.4.5 Tandem Reactions of Terminal Alkynes with Conjugated Electrophiles 394

15.5 Conclusions and Outlook 395
Acknowledgements 396
References 396

Subject Index 404