Atomic and Molecular Radiative Processes

With Applications to Modern Spectroscopy and the Greenhouse Effect
Contents

1 Single-Photon Transitions of Atomic Particles ... 1
1.1 Principles of Atomic and Molecular Structure .. 1
 1.1.1 One and Two-Electron Atoms .. 1
 1.1.2 Light Atoms .. 4
 1.1.3 LS- and jj-Coupling Schemes ... 8
 1.1.4 Parentage Scheme of Atom .. 11
1.2 Single-Photon Transitions ... 12
 1.2.1 Rates of Single-Photon Transitions for Nonrelativistic System 12
 1.2.2 Intensity of Radiative Transitions ... 18
 1.2.3 Selection Rules for Single-Photon Radiative Transitions 20
 1.2.4 Polarization of Spontaneous Radiation of Atomic Particles 26
1.3 Oscillator Strength for Radiative Transition ... 33
 1.3.1 Sum Rules .. 33
 1.3.2 Sum Rules for One-Electron Atom .. 36
 1.3.3 Peculiarities of the Oscillator Strength .. 39
References ... 42

2 Properties of Radiation Field ... 43
2.1 Broadening of Spectral Lines ... 43
 2.1.1 Broadening of Spectral Line for Isolated Atom 43
 2.1.2 Collision Broadening of Spectral Lines .. 51
 2.1.3 Quasistatic Broadening of Spectral Lines 57
2.2 Equilibrium Radiation ... 64
 2.2.1 Laws of Blackbody Radiation .. 64
 2.2.2 Spontaneous and Stimulated Emission ... 66
 2.2.3 Cross Section and Parameters of Radiative Processes 68
References ... 75
3 Resonant Radiation in Atomic Gases 77
3.1 Radiation Involving Resonantly Excited Atoms 77
 3.1.1 Broadening of Resonant Spectral Lines 77
 3.1.2 Propagation of Resonant Radiation in Excited Gas 80
3.2 Applying Aspects of Resonant Photons 87
 3.2.1 Optical Pumping 87
 3.2.2 Cooling of Atoms in Laser Field 88
 3.2.3 Light Induced Drift 91
 3.2.4 Photoresonant Plasma 92
References ... 96

4 Radiative Processes in Molecular Gases 99
4.1 Selection Rules for Radiation of Molecular Gases 99
 4.1.1 Selection Rules for One-Photon Transitions Between Vibrational States in Molecules 99
 4.1.2 Selection Rules for Transitions Between Rotational States of Diatomic Molecules 107
 4.1.3 Radiative Properties of CO₂ Molecule 112
 4.1.4 Spectroscopic Databases 116
4.2 Absorption of Infrared Radiation in Gas of Linear Molecules 117
 4.2.1 Infrared Radiation of Molecular Gas 117
 4.2.2 Vibrational-Rotational Radiative Transitions for Diatomic Molecules 120
 4.2.3 Absorption Coefficient for Gas of Diatomic Molecules 122
 4.2.4 Absorption Coefficient Produced by Carbon Dioxide Molecules 125
References ... 131

5 Elementary Radiative Processes 133
5.1 Radiative Transitions Involving States of Continuous Spectrum 133
 5.1.1 Photoionization and Photodetachment of Atomic Particles .. 133
 5.1.2 Two-Step Photoionization of Atoms 139
 5.1.3 Photodetachment of Hydrogen Negative Ion 140
 5.1.4 Photoionization of Hydrogen Atom 143
 5.1.5 Radiation of Solar Photosphere 147
 5.1.6 Photoprocesses Involving Atmospheric Molecules 149
5.2 Photoprocesses Involving Rydberg States 159
 5.2.1 Photoexcitation and Photoionization of Rydberg Atoms .. 159
 5.2.2 Photoionization of Rydberg Atoms 165
 5.2.3 Rydberg Atoms in Detector of Submillimeter Radiation .. 169
5.3 Photoprocesses Involving Free Electrons 170
 5.3.1 Character of Photorecombination of Atomic Particles 170
5.3.2 Bremsstrahlung Processes Involving Electrons 173
5.3.3 Radiation of Dissociative Air 183
5.4 Reflection of Radiowaves from Ionosphere 186
5.4.1 Reflection of Radiowaves by the Ionosphere E-Layer 186
5.4.2 Reflection of Radiowaves by the Ionosphere F-Layer 188
References 189

6 Photon Interaction with Clusters and Microparticles 191
6.1 Scattering of the Electromagnetic Wave on Atomic and Small Particles 191
6.1.1 Resonance Fluorescence Involving Molecules and Atoms 191
6.1.2 Raman Scattering on Atomic Particles 194
6.1.3 Rayleigh Scattering by Dielectric Particles 202
6.1.4 Small Dielectric Particles in Electromagnetic Field 204
6.2 Absorption of Radiation by Metal Particles 206
6.2.1 Interaction of Metal Particles with the Electromagnetic Wave 206
6.2.2 Absorption of Radiation by Metal Nanoparticles 208
6.2.3 Emission of Metal Clusters in Hot Gases 214
6.3 Absorption by Atmospheric Particles 216
6.3.1 Aerosols and Water Microdrops in Atmosphere 216
6.3.2 Water Microdrops in Clouds 219
6.3.3 Atmospheric Water Microdrops as Atmospheric Radiators and Absorbers 222
References 223

7 Greenhouse Effect in Atmospheres of Earth and Venus 227
7.1 General Principles of Atmospheric Greenhouse Effect 227
7.1.1 Nature of Atmospheric Greenhouse Effect 227
7.1.2 Global Properties of the Earth's Atmosphere 233
7.1.3 Models of Emission from Optically Dense Gaseous Layer 238
7.2 Greenhouse Effect in Atmospheres 241
7.2.1 Emission of Atmospheric CO2 Molecules Towards the Earth 241
7.2.2 Water as Atmospheric Radiator 246
7.2.3 Climate Sensitivity 251
7.2.4 Energy Balance of Venus and Its Atmosphere 256
References 263

Conclusion 267

Bibliography 269

Index 271