Fundamental Mathematical Structures of Quantum Theory

Spectral Theory, Foundational Issues, Symmetries, Algebraic Formulation
1 General Phenomenology of the Quantum World and Elementary Formalism
1.1 The Physics of Quantum Systems ... 1
1.1.1 When Is a Physical System a Quantum System? 1
1.1.2 Basic Properties of Quantum Systems 2
1.2 Elementary Quantum Formalism: The Finite-Dimensional Case 4
1.2.1 Time Evolution .. 8
1.3 A First Look at the Infinite-Dimensional Case, CCRs and Quantization Procedures ... 10
1.3.1 The $L^2(\mathbb{R}, dx)$ Model ... 10
1.3.2 The $L^2(\mathbb{R}^n, d^n x)$ Model and Heisenberg's Inequalities 13
1.3.3 Failure of Dirac's Quantization and Deformation Quantization Procedure ... 14

2 Hilbert Spaces and Classes of Operators 17
2.1 Hilbert Spaces: A Round-Up ... 17
2.1.1 Basic Properties ... 18
2.1.2 Orthogonality and Hilbert Bases 19
2.1.3 Two Notions of Hilbert Orthogonal Direct Sum 21
2.1.4 Tensor Product of Hilbert Spaces 22
2.2 Classes of (Unbounded) Operators on Hilbert Spaces 23
2.2.1 Operators and Abstract Algebras 23
2.2.2 Adjoint Operators ... 27
2.2.3 Closed and Closable Operators 29
2.2.4 Types of Operators Relevant in Quantum Theory 32
2.2.5 The Interplay of Ker, Ran, *, and \perp 36
2.2.6 Criteria for (Essential) Selfadjointness 37
2.2.7 Position and Momentum Operators and Other Physical Examples ... 40
3 Observables and States in General
Hilbert Spaces: Spectral Theory ... 47
3.1 Basics on Spectral Theory ... 47
3.1.1 Resolvent and Spectrum ... 47
3.1.2 Spectra of Special Operator Types 52
3.2 Integration of Projector-Valued Measures 55
3.2.1 Orthogonal Projectors .. 55
3.2.2 Projector-Valued Measures (PVMs) 58
3.2.3 PVM-Integration of Bounded Functions 70
3.2.4 PVM-Integration of Unbounded Functions 75
3.3 Spectral Decomposition of Selfadjoint Operators 77
3.3.1 Spectral Theorem for Selfadjoint, Possibly Unbounded, Operators .. 78
3.3.2 Some Technically Relevant Consequences of the Spectral Theorem .. 88
3.3.3 Joint Spectral Measures ... 92
3.3.4 Measurable Functional Calculus 93
3.3.5 A First Glance at One-Parameter Groups of Unitary Operators .. 95
3.4 Elementary Quantum Formalism: A Rigorous Approach 98
3.4.1 Elementary Formalism for the Infinite-Dimensional Case 98
3.4.2 Commuting Spectral Measures 101
3.4.3 A First Look at the Time Evolution of Quantum States 104
3.4.4 A First Look at (Continuous) Symmetries and Conserved Quantities ... 107
3.5 Round-Up of Operator Topologies 109
3.6 Existence Theorems of Spectral Measures 112
3.6.1 Continuous Functional Calculus 112
3.6.2 Existence of Spectral Measures for Bounded Selfadjoint Operators .. 116
3.6.3 Spectral Theorem for Normal Operators in \(\mathfrak{B}(H) \) ... 119
3.6.4 Existence of Spectral Measures for Unbounded Selfadjoint Operators ... 122
3.6.5 Existence of Joint Spectral Measures 124

4 Fundamental Quantum Structures on Hilbert Spaces 131
4.1 Lattices in Classical and Quantum Mechanics 131
4.1.1 A Different Viewpoint on Classical Mechanics 131
4.1.2 The Notion of Lattice ... 134
4.2 The Non-Boolean Logic of QM 136
4.2.1 The Lattice of Quantum Elementary Observables 136
4.2.2 Part of Classical Mechanics is Hidden in QM 138
4.2.3 A Reason Why Observables Are Selfadjoint Operators 143
4.3 Recovering the Hilbert Space Structure:
The “Coordinatization” Problem .. 144
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 Quantum States as Probability Measures and Gleason's Theorem</td>
<td>148</td>
</tr>
<tr>
<td>4.4.1 Probability Measures on $\mathcal{L}(H)$</td>
<td>148</td>
</tr>
<tr>
<td>4.4.2 Polar Decomposition</td>
<td>149</td>
</tr>
<tr>
<td>4.4.3 The Two-Sided *-Ideal of Compact Operators</td>
<td>152</td>
</tr>
<tr>
<td>4.4.4 Trace-Class Operators</td>
<td>158</td>
</tr>
<tr>
<td>4.4.5 The Mathematical Notion of Quantum State and Gleason's Theorem</td>
<td>167</td>
</tr>
<tr>
<td>4.4.6 Physical Interpretation</td>
<td>174</td>
</tr>
<tr>
<td>4.4.7 Post-measurement States: The Meaning of the Lüders-von Neumann Postulate</td>
<td>175</td>
</tr>
<tr>
<td>4.4.8 Composite Systems in Elementary QM: The Use of Tensor Products</td>
<td>178</td>
</tr>
<tr>
<td>4.5 General Interplay of Quantum Observables and Quantum States</td>
<td>181</td>
</tr>
<tr>
<td>4.5.1 Observables, Expectation Values, Standard Deviations</td>
<td>182</td>
</tr>
<tr>
<td>4.5.2 Relation with the Formalism Used in Physics</td>
<td>183</td>
</tr>
<tr>
<td>5 Realism, Non-Contextuality, Local Causality, Entanglement</td>
<td>187</td>
</tr>
<tr>
<td>5.1 Hidden Variables and no-go Results</td>
<td>187</td>
</tr>
<tr>
<td>5.1.1 Realistic Hidden-Variable Theories</td>
<td>188</td>
</tr>
<tr>
<td>5.1.2 The Bell and Kochen–Specker no-go Theorems</td>
<td>188</td>
</tr>
<tr>
<td>5.1.3 An Alternative Version of the Kochen–Specker Theorem</td>
<td>192</td>
</tr>
<tr>
<td>5.2 Realistic (Non-)Contextual Theories</td>
<td>193</td>
</tr>
<tr>
<td>5.2.1 An Impervious Way Out: The Notion of Contextuality</td>
<td>194</td>
</tr>
<tr>
<td>5.2.2 The Peres–Mermin Magic Square</td>
<td>196</td>
</tr>
<tr>
<td>5.2.3 A State-Independent Test on Realistic Non-Contextuality</td>
<td>198</td>
</tr>
<tr>
<td>5.3 Entanglement and the BCHSH Inequality</td>
<td>201</td>
</tr>
<tr>
<td>5.3.1 BCHSH Inequality from Realism and Locality</td>
<td>202</td>
</tr>
<tr>
<td>5.3.2 BCHSH Inequality and Factorized States</td>
<td>205</td>
</tr>
<tr>
<td>5.3.3 BCHSH Inequality from Relativistic Local Causality and Realism</td>
<td>206</td>
</tr>
<tr>
<td>5.3.4 BCHSH Inequality from Realism and Non-Contextuality</td>
<td>210</td>
</tr>
<tr>
<td>6 von Neumann Algebras of Observables and Superselection Rules</td>
<td>213</td>
</tr>
<tr>
<td>6.1 Introduction to von Neumann Algebras</td>
<td>213</td>
</tr>
<tr>
<td>6.1.1 The Mathematical Notion of von Neumann Algebra</td>
<td>214</td>
</tr>
<tr>
<td>6.1.2 Unbounded Selfadjoint Operators Affiliated to a von Neumann Algebra</td>
<td>218</td>
</tr>
<tr>
<td>6.1.3 Lattices of Orthogonal Projectors of von Neumann Algebras and Factors</td>
<td>220</td>
</tr>
<tr>
<td>6.1.4 A Few Words on the Classification of Factors and von Neumann Algebras</td>
<td>223</td>
</tr>
<tr>
<td>6.1.5 Schur's Lemma</td>
<td>224</td>
</tr>
<tr>
<td>6.1.6 The von Neumann Algebra Associated to a PVM</td>
<td>225</td>
</tr>
<tr>
<td>6.2 von Neumann Algebras of Observables</td>
<td>228</td>
</tr>
<tr>
<td>6.2.1 The von Neumann Algebra of a Quantum System</td>
<td>228</td>
</tr>
</tbody>
</table>
6.2.2 Complete Sets of Compatible Observables and Preparation of Vector States .. 229
6.3 Superselection Rules and Other Structures of the Algebra of Observables ... 234
6.3.1 Abelian Superselection Rules and Coherent Sectors 234
6.3.2 Global Gauge Group Formulation and Non-Abelian Superselection ... 238
6.3.3 Quantum States in the Presence of Abelian Superselection Rules ... 241
6.3.4 The General Case $\mathcal{G} \subset \mathcal{B}(H)$: Quantum Probability Measures, Normal and Algebraic States 246
6.4 Composite Systems and von Neumann Algebras: Independent Subsystems ... 248
6.4.1 W^*-Independence and Statistical Independence 248
6.4.2 The Split Property ... 251
7 Quantum Symmetries .. 253
7.1 Quantum Symmetries According to Kadison and Wigner 253
7.1.1 Wigner Symmetries, Kadison Symmetries and Ortho-Automorphisms ... 254
7.1.2 The Theorems of Wigner, Kadison and Dye 257
7.1.3 Action of Symmetries on Observables and Physical Interpretation ... 259
7.2 Groups of Quantum Symmetries ... 261
7.2.1 Unitary(-Projective) Representations of Groups of Quantum Symmetries ... 262
7.2.2 Representations Comprising Anti-Unitary Operators 264
7.2.3 Unitary-Projective Representations of Lie Groups and Bargmann's Theorem ... 265
7.2.4 Inequivalent Unitary-Projective Representations and Superselection Rules ... 269
7.2.5 Continuous Unitary-Projective and Unitary Representations of \mathbb{R} ... 271
7.2.6 Strongly Continuous One-Parameter Unitary Groups: Stone's Theorem ... 274
7.2.7 Time Evolution, Heisenberg Picture and Quantum Noether Theorem ... 280
7.3 More on Strongly Continuous Unitary Representations of Lie Groups ... 285
7.3.1 Strongly Continuous Unitary Representations 286
7.3.2 From the Gårding Space to Nelson's Theorem 288
7.3.3 Pauli's Theorem ... 296
8 The Algebraic Formulation ... 299
8.1 Physical Motivations ... 299
8.2 Observables and States in the Algebraic Formalism 301
Contents

8.2.1 The C*-Algebra Case .. 301
8.2.2 The *-Algebra Case .. 303
8.2.3 Consistency of a Probabilistic Interpretation 304
8.3 The GNS Constructions and Their Consequences 306
 8.3.1 The GNS Reconstruction Theorem: The C*-Algebra Case .. 307
 8.3.2 The GNS Reconstruction Theorem: The *-Algebra Case 309
 8.3.3 Normal States ... 312
 8.3.4 The Gelfand-Najmark Theorem 313
 8.3.5 Pure States, Irreducible Representations and Superselection Rules .. 314
8.4 Examples: Weyl C*-Algebras .. 317
8.5 Symmetries and Algebraic Formulation 321
 8.5.1 Symmetries and Spontaneous Symmetry Breaking 321
 8.5.2 Groups of Symmetries in the Algebraic Approach 323

References ... 327

Index ... 333