A Practical Guide to Design for Additive Manufacturing

Contents

1	Intro	duction to Additive Manufacturing				
	1.1	What Is Additive Manufacturing?				
	1.2	The Additive Manufacturing Process Chain				
	1.3	Current Usage of Additive Manufacturing				
	1.4	The Advantages of Additive Manufacturing	8			
		1.4.1 Part Complexity	8			
		1.4.2 Instant Assemblies	11			
		1.4.3 Part Consolidation	12			
		1.4.4 Mass Customization	13			
		1.4.5 Freedom of Design	13			
		1.4.6 Light-Weighting	14			
		1.4.7 On-Demand Manufacturing	16			
2	Addi	Additive Manufacturing Technologies				
	2.1	Material Extrusion	19			
	2.2	Material Jetting				
	2.3	Binder Jetting				
	2.4	Sheet Lamination				
	2.5	Vat Photopolymerisation				
	2.6	Powder Bed Fusion				
	2.7	Direct Energy Deposition	35			
	2.8	Hybrid AM	37			
	2.9	AM Technology Readiness Level for Part Production	38			
3	DfAl	fAM Strategic Design Considerations				
	3.1	Introduction to Design for Additive Manufacturing	41			
	3.2	Using AM to Add Value to Products				
	3.3	General Guidelines for Designing AM Parts	43			
		3.3.1 The #1 Rule of Design for AM	43			
		3.3.2 The #2 Rule of Design for AM	44			

X Contents

		3.3.3 The #3 Rule of Design for AM	45		
		3.3.4 The #4 Rule of Design for AM	45		
		3.3.5 The #5 Rule of Design for AM	45		
		3.3.6 The #6 Rule of Design for AM	46		
		3.3.7 The #7 Rule of Design for AM	47		
	3.4	Design to Avoid Anisotropy	47		
	3.5	The Economics of Additive Manufacturing	48		
		3.5.1 Time Factors That Are Not Affected by Design	51		
	3.6	Design to Minimize Print Time	52		
	3.7	Design to Minimize Post-processing	56		
	3.8	Take Advantage of Design Complexity	64		
	3.9	Function First, Materials Second	66		
	3.10	Use Topology Optimisation or Lattice Structures	67		
4	C				
4		putational Tools for Design Analysis and Optimisation	71		
		M Parts	71		
	4.1	Aims of Using Design Analysis for AM	71		
	4.2	Special Considerations for Analysis of AM Parts	71		
		4.2.1 Material Data	71		
		4.2.2 Surface Finish	72		
		4.2.3 Geometry	72		
		4.2.4 Simplifying Geometry	72		
		4.2.5 Mesh-Based Versus Parametric Models	73		
		4.2.6 Geometry Distortion	73		
	4.3	Mesh	73		
		4.3.1 Parametric Models	73		
		4.3.2 Mesh-Based Models	74		
	4.4	Boundary Conditions			
	4.5	Optimisation74			
	4.6	Topology Optimisation	74		
		4.6.1 Objective and Constraints	75		
		4.6.2 Common Settings	75		
		4.6.3 Post-processing and Interpreting Results	75		
	4.7	Parametric or Size Optimisation	76		
	4.8	Build Process Simulation	76		
		4.8.1 Layer-by-Layer Simulation	77		
		4.8.2 Scan Pattern Simulation	77		
		4.8.3 Limitations	77		
5	Guid	elines for Part Consolidation	79		
-	5.1	Design for Function	80		
	5.2	Material Considerations 81			
	5.3	Number of Fasteners			
	5.4	Use Knowledge from Conventional DFM/DFA	82		
			~ -		

Contents xi

5.5 5.6			83 83			
5.7			84			
Guidelines for AM Tooling Design						
6.1	Mountin	g Fixtures and Guides	85			
6.2	Conform	nal Cooling	86			
6.3	Coolant	Flow Strategies	88			
6.4	Coolant	Channel Shape	89			
6.5						
6.6			90			
6.7	Minimis	e Print Time in Tooling	91			
Desig			93			
7.1	Anisotro	ppy	93			
7.2			94			
7.3			95			
7.4			96			
7.5			97			
7.6			98			
7.7	Font Siz		100			
	7.7.1		100			
	7.7.2	Font Sizes	100			
Polymer Design Guidelines						
8.1	_		103			
	8.1.1		103			
	8.1.2		104			
	8.1.3		104			
	8.1.4	Fill Style	105			
	8.1.5	Other Considerations	106			
	8.1.6		107			
	8.1.7		107			
	8.1.8		107			
	8.1.9		108			
	Q 1 10		100			
	0.1.10		108			
	Q 1 11		100			
		▼ ▲	109			
			110			
Q 2			110			
0.4	•		111			
	822	Layer Thickness	111			
	5.6 5.7 Guid 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Desig 7.1 7.2 7.3 7.4 7.5 7.6 7.7	5.6 Moving 5.7 Common Guidelines for 6.1 Mountin 6.2 Conform 6.3 Coolant 6.4 Coolant 6.5 Coolant 6.6 A Hybri 6.7 Minimis Design for Pol 7.1 Anisotro 7.2 Wall Th 7.3 Overham 7.4 Holes	5.6 Moving Parts 5.7 Common Sense Guidelines for AM Tooling Design 6.1 Mounting Fixtures and Guides. 6.2 Conformal Cooling. 6.3 Coolant Flow Strategies 6.4 Coolant Channel Shape. 6.5 Coolant Channel Spacing 6.6 A Hybrid Approach to AM Tooling. 6.7 Minimise Print Time in Tooling Design for Polymer AM 7.1 Anisotropy 7.2 Wall Thicknesses 7.3 Overhangs and Support Material 7.4 Holes. 7.5 Ribs. 7.6 Avoiding Superfluous Material 7.7 Font Sizes and Small Details. 7.7.1 Small Details 7.7.2 Font Sizes Polymer Design Guidelines 8.1 Designing for Material Extrusion 8.1.1 Material Extrusion Accuracy and Tolerances 8.1.2 Layer Thickness 8.1.3 Support Material 8.1.4 Fill Style 8.1.5 Other Considerations 8.1.6 Feature Type: Vertical Wall Thickness 8.1.7 Feature Type: Horizontal Walls 8.1.8 Feature Type: Clearances Between Moving Parts with Soluble Supports 8.1.10 Feature Type: Clearance Between Moving Parts with Soluble Supports 8.1.11 Feature Type: Clearance Between Moving Parts with Break-Away Support Material 8.1.1.1 Feature Type: Clearance Between Moving Parts with Break-Away Support Material 8.1.11 Feature Type: Clearance Between Moving Parts with Break-Away Support Material 8.1.11 Feature Type: Clearance Between Moving Parts with Break-Away Support Material 8.1.11 Feature Type: Clearance Between Moving Parts with Break-Away Support Material 8.1.11 Feature Type: Circular Pins 8.1.13 Feature Type: Circular Pins 8.1.13 Feature Type: Circular Pins 8.1.15 Designing for Polymer Powder Bed Fusion 8.2.1 Powder Bed Fusion Accuracy and Tolerances			

xii Contents

		8.2.3	Avoiding Large Masses of Material	111		
		8.2.4	Powder Age and Refresh Rate	112		
		8.2.5	Feature Type: Wall Thickness	112		
		8.2.6	Feature Type: Clearance Between Moving Parts	113		
		8.2.7	Feature Type: Circular Profile Through Holes	113		
		8.2.8	Feature Type: Square Profile Through Holes	114		
		8.2.9	Feature Type: Circular Pins	114		
		8.2.10	Feature Type: Hole Proximity to Wall Edge	115		
	8.3		ng for Vat Photopolymerisation	115		
		8.3.1	Resolution	115		
		8.3.2	Print Orientation	116		
		8.3.3	Support Material	116		
		8.3.4	Overhangs	116		
		8.3.5	Isotropy	117		
		8.3.6	Hollowing Parts and Resin Removal	117		
		8.3.7	Details	118		
		8.3.8	Horizontal Bridges	118		
		8.3.9	Connections	118		
		8.3.10	Feature Type: Wall Thickness	118		
		8.3.11	Feature Type: Circular Holes	119		
9	Desig	sign for Metal AM				
	9.1		ng for Metal Powder Bed Fusion	121		
	9.2	The Bas	ics of Powder Bed Fusion	122		
	9.3	Metal Po	owder Production	122		
	9.4		Morphology (Ideal Powder Shape)	124		
	9.5	Powder Size Distribution				
	9.6	Other Powder Considerations				
	9.7	Metal AM Material Characteristics				
	9.8		Defects in AM Materials	126		
	9.9	The Met	al AM Process	128		
		9.9.1	Energy Density	130		
	9.10		ed Chaos	132		
	9.11		lity of Metal AM	132		
	9.12		y Optimisation	133		
	9.13		Structures	134		
		9.13.1	Lattice Structure Strut Diameters	137		
	9.14		gs and Support Material	138		
		9.14.1	Printing Parts with Large Horizontal Surfaces	139		
		9.14.2	Angle for Support Material	141		
		9.14.3	Unsupported Angles, Overhangs, and Bridges	141		
	9.15		Stress	143		
		9.15.1	Designing to Reduce Residual Stress	144		
		9.15.2	Designing to Minimize Residual Stress Example	145		

Contents xiii

	9.16	Stress C	oncentrations	149
		9.16.1	Designing to Reduce Stress Concentrations	149
	9.17	Horizon	tal Holes	150
	9.18		up a Metal AM Print Job	151
		9.18.1	General Part Positioning Guidelines	152
10	Metal	AM Gu	idelines	157
	10.1		for Laser Powder Bed Fusion	157
		10.1.1	Feature Type: Wall Thickness	157
		10.1.2	Feature Type: Overhang Angle	158
		10.1.3	Feature Type: Clearance Between Moving Parts	158
		10.1.4	Feature Type: Vertical Slots and Circular Holes	159
		10.1.5	Feature Type: Vertical Bosses and Circular Pins	159
		10.1.6	Feature Type: Built-In External Screw Threads	159
	10.2	Design 1	for Electron Beam Melting	160
		10.2.1	Post Processing	161
		10.2.2	Design Guidelines	162
		10.2.3	Feature Type: Wall Thickness	164
		10.2.4	Feature Type: Vertical Slots and Circular Holes	164
		10.2.5	Feature Type: Clearances to Remove Powder	165
		10.2.6	Feature Type: Screw and Threads	165
	10.3	Designin	ng for Metal Binder Jetting	166
		10.3.1	Shrinkage	166
		10.3.2	Part Density	167
		10.3.3	The Most Important Design Rule for Metal	
			Binder Jetting	168
		10.3.4	Feature Type: Wall Thicknesses	171
		10.3.5	Feature Type: Overhang	172
		10.3.6	Feature Type: Holes	172
		10.3.7	Feature Type: Salt-Shaker Holes	173
11	Othe	r AM Co	nsiderations	175
	11.1	Designe	r Machine Operator Cooperation	175
	11.2	Health a	and Safety	176
		11.2.1	Material Exposure	176
		11.2.2	Gas Monitoring	176
		11.2.3	Gas Exhaust	177
		11.2.4	Material Handling	177
		11.2.5	Risk of Explosion	177
	11.3		t Certification	177
		11.3.1	What Needs to Be Certified?	178
12	Post-processing			
	12.1	Support	Material Removal	182
		12.1.1	Polymer	182
		12.1.2	Metal	187

xiv Contents

	12.2		Surface Treatments	191	
		12.2.1	Vapour Smoothing	191	
		12.2.2	Tumbling	194	
		12.2.3	Dying	195	
		12.2.4	Painting	196	
		12.2.5	Using Textures	196	
		12.2.6	Sand Blasting	197	
		12.2.7	Machining	197	
		12.2.8	Metalizing	198	
		12.2.9	Wrapping	198	
		12.2.10	Hydrographics	199	
	12.3	Metal Si	urface Treatments	199	
		12.3.1	Shot-Peening	200	
		12.3.2	Plasma Cleaning and Ion Beam Cleaning	200	
		12.3.3	Machining and Grinding	201	
		12.3.4	Abrasive Flow Machining	201	
		12.3.5	Anodizing	202	
		12.3.6	Plasma Spraying	202	
		12.3.7	Plating and PVD	202	
		12.3.8	Painting	203	
	12.4	_	and Welding AM Parts	204	
	12.5		eatment and Aging	204	
		12.5.1	Residual Stress Relief	204	
		12.5.2	Hot Isostatic Pressing (HIP)	205	
		12.5.3	Case Hardening and Gas Nitride Treatment	206	
13	The 1	Future of	Additive Manufacturing	209	
	13.1 Functionally Graded Materials				
	13.3	Construc	ction Applications	211	
	13.4	Printed 1	Electronics	212	
	13.5	Nano Pr	rinting	214	
	13.6	Food Pr	inters	214	
14	Conc	luding R	emarks	217	
Glo	ssary (of Terms		219	
Ref	References and Further Reading				