Handbook of Automotive Human Factors

Edited by:

Motoyuki Akamatsu
Automotive Human Factors Research Center, AIST, Tsukuba, Japan

For:
Society of Automotive Engineers of Japan, Inc.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Preface</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>1. Overview of Automotive Ergonomics and Human Factors</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Ergonomics and Human Factors for Making Products and Systems Compatible with Humans</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Beginning of Human-compatible Automobile Design</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Vehicle Cabin Design</td>
<td>1.3</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Instruments and Displays</td>
<td>1.4</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1 Instrument Arrangement</td>
<td>1.4.1</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2 Meters and Displays</td>
<td>1.4.2</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3 Controls</td>
<td>1.4.3</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Riding Comfort and Fatigue</td>
<td>1.5</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1 Fatigue</td>
<td>1.5.1</td>
<td>7</td>
</tr>
<tr>
<td>1.5.2 Vibration</td>
<td>1.5.2</td>
<td>8</td>
</tr>
<tr>
<td>1.5.3 Arousal Level</td>
<td>1.5.3</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Vehicle Interior Environment</td>
<td>1.6</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Driving Tasks and Non-driving Tasks</td>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>1.7.1 In-vehicle Systems</td>
<td>1.7.1</td>
<td>10</td>
</tr>
<tr>
<td>1.7.2 Non-driving Activities like Using Mobile Phones</td>
<td>1.7.2</td>
<td>11</td>
</tr>
<tr>
<td>1.7.3 Visual Distraction</td>
<td>1.7.3</td>
<td>11</td>
</tr>
<tr>
<td>1.7.4 Mental Workload and Cognitive Distraction</td>
<td>1.7.4</td>
<td>12</td>
</tr>
<tr>
<td>1.8 Driver Model and Driving Behavior Measurement</td>
<td>1.8</td>
<td>13</td>
</tr>
<tr>
<td>1.8.1 Driver Model</td>
<td>1.8.1</td>
<td>13</td>
</tr>
<tr>
<td>1.8.2 Driving Behavior Measurement</td>
<td>1.8.2</td>
<td>13</td>
</tr>
<tr>
<td>1.8.2.1 Site-based Measurement</td>
<td>1.8.2.1</td>
<td>13</td>
</tr>
<tr>
<td>1.8.2.2 Driving Simulators</td>
<td>1.8.2.2</td>
<td>14</td>
</tr>
<tr>
<td>1.8.2.3 Equipped Vehicles and Naturalistic Driving Study</td>
<td>1.8.2.3</td>
<td>15</td>
</tr>
<tr>
<td>1.9 Driving-assistance Systems/Automated Driving Systems</td>
<td>1.9</td>
<td>15</td>
</tr>
<tr>
<td>1.9.1 ACC/Lane-keeping Systems</td>
<td>1.9.1</td>
<td>15</td>
</tr>
<tr>
<td>1.9.2 Automated Driving Systems</td>
<td>1.9.2</td>
<td>16</td>
</tr>
<tr>
<td>1.10 Elderly Drivers</td>
<td>1.10</td>
<td>17</td>
</tr>
<tr>
<td>1.11 Positive Aspects of Automobile Driving</td>
<td>1.11</td>
<td>18</td>
</tr>
<tr>
<td>1.11.1 Enjoyment and Growth</td>
<td>1.11.1</td>
<td>18</td>
</tr>
<tr>
<td>1.11.2 Stress Relief</td>
<td>1.11.2</td>
<td>20</td>
</tr>
</tbody>
</table>
1.12 Future of Automobile Ergonomics: Viewpoint of Service Engineering for Providing Value to Users

References

2. Ergonomic and Human Factors in Automobile Design and Development Process

2.1 Ergonomists' Roles and Responsibilities in Automobile Design and Development
2.1.1 Ergonomics for Automobiles
2.1.2 Development Process
2.1.3 Identifying Out User Requirements
2.1.4 Ergonomics in Design Stage
2.1.5 Ergonomics in Assessment Stage
2.1.6 Feedback from Users
2.1.7 Designing User's Manual

2.2 Surveys for Understanding Users in Design Stage
2.2.1 Viewpoints for Considering Target Users
2.2.2 Observation-based Approach
 2.2.2.1 Knowing User Requirements
 2.2.2.2 Behavior Observation
 2.2.2.3 Ethnographical Methods
 2.2.2.4 Task Analysis
2.2.3 Questionnaire and Interview Approach
 2.2.3.1 Objectives of Questionnaires and Interviews
 2.2.3.2 Selecting Survey Methods
 2.2.3.3 Designing Paper Questionnaires and Interviews
 2.2.3.4 Depth Interview Method
 2.2.3.5 Group Interview

2.3 Driving Behavior Measurement
2.3.1 Driving Behavior Measurement Using Driving Simulators
 2.3.1.1 Objectives of Using Driving Simulators
 2.3.1.2 Basic Configuration of Driving Simulators
 2.3.1.3 Classification of Driving Simulators
 2.3.1.4 Driving Simulator Sickness
 2.3.1.5 Other Tips for Use in Driving Simulators
2.3.2 Driving Behavior Measurement Using Instrumented Vehicles
 2.3.2.1 Instrumented Vehicle
 2.3.2.2 Measurement Environment
 2.3.2.2.1 Measurement on a Test Track
 2.3.2.2.2 Measurement on Real Roads
 2.3.2.3 FOT and NDS
2.3.3 Driving Behavior Analysis Using Drive Recorders
 2.3.3.1 Drive Recorder Specifications
 2.3.3.2 Recording Driving Behavior
 2.3.3.2.1 Face Direction
 2.3.3.2.2 Recording Traffic Conditions
2.3.3.3 Data Recording Methods 56
 2.3.3.3.1 Event Trigger Methods 56
 2.3.3.3.2 Continuous Recording Methods 56
2.3.3.4 Examples of Drive Recorder Data Analysis 56
 2.3.3.4.1 Time Series Analysis Using Variation Tree Analysis 56
 2.3.3.4.2 Analyzing a Series of Background Factors 58

References 59

3. Comfort and Quality 62

3.1 Occupant Comfort During Vehicle Run 62
 3.1.1 Vibration and Comfort 62
 3.1.1.1 Basic Vibration Measurement and Evaluation Methods 63
 3.1.1.2 Riding Comfort Evaluation by Phenomenon 64
 3.1.1.3 Method for Estimating the Vibration of the Seat when an Occupant is Sitting 64
 3.1.2 Comfort of the Seat 65
 3.1.2.1 Seat Structure and Vibration Absorption Properties 66
 3.1.2.1.1 Transmission of Vibration through the Seat 66
 3.1.2.1.2 Issues on the Measurement of the Vibration of the Seat 66
 3.1.2.1.3 Seat Structure and Specific Characteristics of Vibration 66
 3.1.2.1.4 Vibration Characteristics of the Parts of Seat 67
 3.1.2.1.5 Changes in the Characteristics of Vibrations on People 68
 3.1.2.2 Body Movements Caused by Acceleration 68
 3.1.2.3 Support Performance of the Seat 69
 3.1.2.3.1 Lateral Movements 69
 3.1.2.3.2 Movements of the Head 70
 3.1.2.3.3 Support by the Seat during Driving 70
 3.1.3 Vibration and Driving Performance 70
3.2 Acoustic Comfort 75
 3.2.1 Design of the Engine Sound 75
 3.2.1.1 Acoustic Characteristics that Influence Sound Design 75
 3.2.1.2 Order Composition of Sounds 75
 3.2.1.2.1 Orders and Generation Mechanism 75
 (1) Engine sound 75
 (2) Suction sound 76
 (3) Exhaust sound 77
 3.2.1.2.2 Relationship of the Order Composition and the Impression of the Sound 77
 3.2.1.3 Control of the Sound 77
 3.2.1.3.1 Method that Uses Components of the Vehicle 78
 3.2.1.3.2 Method that Uses Devices for Creating Sounds 78

References 59
3.2.1.4 Sound Evaluation Methods 79
3.2.2 Sound of the Door Closing 79
 3.2.2.1 Need for Research on Door Sounds 79
 3.2.2.2 Mechanism of Door Closing Sounds 80
 3.2.2.3 Conditions for Good Door Closing Sound 81
 3.2.2.3.1 Arranging the Distribution of Frequency 81
 3.2.2.3.2 Adding Reverberation Effects: It is Effective to give Two Sounds with the Same Frequency Components 81
 3.2.2.4 How to Realize It 82
 3.2.2.4.1 Method of Producing Sounds of Low Frequency 82
 3.2.2.4.2 How to Produce the Two Successive Sounds 82
 3.2.2.5 Other Considerations 83
3.3 Cabin Air Quality 83
 3.3.1 Smells in the Interior of the Vehicle 83
 3.3.1.1 Sensory Evaluation 83
 3.3.1.2 Instrumental Analysis 84
 3.3.1.3 Odor Sensors 85
 3.3.1.4 Odor Control 85
 3.3.2 Effects of Fragrance 86
 3.3.2.1 Perception Mechanism of Smells 86
 3.3.2.2 Emotional and Physiological Effects of Fragrances 87
 3.3.2.3 Future of Vehicles and Smells 88
3.4 Visual Environment of Vehicle Interior 88
 3.4.1 Function and Design of Vehicle Interior Lighting 88
 3.4.1.1 Types of Lighting 88
 3.4.1.2 Requirements for Functional Lighting Design and a Study Example 89
 3.4.1.3 Map and Reading Lamps 90
 3.4.1.4 Vanity Lamps 90
 3.4.2 Comfort Provided by Vehicle Interior Lighting 91
 3.4.2.1 Effect of Shape and Brightness of Light Source on People’s Impression of Vehicle Comfort and Spaciousness 91
 3.4.2.2 Poor Visibility of Vehicle Interior from Outside 93
3.5 Interior Materials 94
 3.5.1 Evaluation Criteria for Interior Material 94
 3.5.2 Gripping Functions 94
 3.5.2.1 Functions of Vehicle Operation System 94
 3.5.2.2 Grips that Support Drivers/Passengers with Physical Stability 95
 3.5.2.3 Gripping Functions of Non-grip Parts 95
 3.5.3 Effect of Sweat 95
 3.5.4 Difference in Skin Structure Among Body Parts 96
 3.5.5 Stickiness 96
3.5.6 Thermal Sensation 97
3.5.7 Breathable Seat Materials and Structures 98
3.5.8 Texture and Durability 98

References 98

4. Driver State 102

4.1 Driving Fatigue, Workload, and Stress 102
 4.1.1 Stress and Strain 102
 4.1.2 Driver Fatigue 103
 4.1.3 Mental Workload and Tasks 104
 4.1.4 Mental Workload Described in ISO 10075 105
 4.1.5 Task Demand, Mental Resource and Fatigue 107
 4.1.6 Difference Between the Concept of Mental Workload and the Concept of Stress/Strain 107
 4.1.7 Driver’s Stress 108

4.2 Enjoyment Generated by Automobiles 109
 4.2.1 Utility of Automobile Use 109
 4.2.2 Automobiles as a Tool for Stimulating Emotions 110
 4.2.3 Flow Theory of Csikszentmihalyi 110
 4.2.4 Flow and Increase of Skills 112
 4.2.5 Flow and the Zone 113
 4.2.6 Effects of Feelings of Enjoyment 114
 4.2.7 Subjective Well-being and Automobiles 114

4.3 Arousal Level 115
 4.3.1 Arousal Level and Sleepiness 115
 4.3.2 Sleepiness Measurement Methods 117
 4.3.2.1 Sleep Propensity 117
 4.3.2.2 Vigilance 118
 4.3.2.3 Subjective Sleepiness 120
 4.3.3 Arousal Level Measurement 121
 4.3.3.1 Driving Behavior 121
 4.3.3.2 EEG 121
 4.3.3.3 Rating Based on Facial Expressions 121
 4.3.3.4 Pupil Diameter 122
 4.3.3.5 Eye Movement 122
 4.3.3.5.1 Saccade 122
 4.3.3.5.2 Slow Eye Movement 123
 4.3.3.5.3 Vestibulo-ocular reflex (VOR) 123
 4.3.3.6 Eyelid Activity 123
 4.3.3.6.1 PERCLOS 123
 4.3.3.6.2 Integrated Indices of Eye-related Measures 124
 4.3.4 Arousal-enhancing Technology 126
 4.3.4.1 Sleepiness and Arousal Level 126
 4.3.4.2 Counter Measures against Sleepiness, Napping 128
4.3.4.3	Counter Measure against Sleepiness, Other than Napping	129
4.3.4.4	Summary	130
4.4	Techniques for Measuring/Analyzing Physical Conditions	130
4.4.1	Significance of Introducing Biosignal Measurement	130
4.4.1.1	Purpose of Biosignal Measurement	130
4.4.1.2	Activities of an Organism and Biological Systems	131
4.4.1.3	Advantages and Disadvantages of Biological Measurement	131
4.4.1.4	Potential of Biosignal Measurement	132
4.4.2	Indices of Central Nervous System Activity	132
4.4.2.1	Electroencephalogram (EEG)	133
4.4.2.2	Functional Magnetic Resonance Imaging (fMRI)	135
4.4.2.3	Functional Near Infrared Spectroscopy (fNIRS)	135
4.4.2.4	Critical Flicker Fusion Frequency (CFF)	139
4.4.3	Indices Relating to the Visual System	139
4.4.3.1	Eye Movement	140
4.4.3.2	Visual Field	142
4.4.3.3	Eye Blink	143
4.4.3.4	Pupil	143
4.4.4	Indices of Autonomic Nervous System Activity	144
4.4.4.1	Heart Rate	144
4.4.4.2	Heart Rate Variability (HRV) Indices	145
4.4.4.3	Blood Pressure and Pulse Waves	146
4.4.4.4	Respiration	146
4.4.4.5	Electrodermal Activity	147
4.4.4.6	Skin Temperature	148
4.4.5	Facial Expression	148
4.4.5.1	Anatomy of Mimetic Muscles	148
4.4.5.2	Relationship Between Facial Expression and Emotion	149
4.4.5.3	Techniques for Estimating Emotions Based on Facial Images	151
4.4.5.4	Relationship Between Facial Expression and Driver States	152
4.4.5.5	Application of Facial Expressions to Automobile and Future Challenges	152
4.4.6	Biochemical Reactions	152

References

5. **Driver and System Interaction**

5.1 Mental Workload while Using In-vehicle System

5.1.1 Workload Measurement Using Questionnaires

5.1.1.1 Cooper-Harper Rating Scale

5.1.1.2 NASA-TLX

5.1.1.3 SWAT

5.1.1.4 Workload Profile Method (WP)

5.1.1.5 Rating Scale Mental Effort (RSME)
5.1.2 Mental Workload Assessment Using the Subsidiary Task Method
5.1.2.1 Two Types of Subsidiary Tasks 169
5.1.2.2 Psychological Concepts Related to the Subsidiary Task Method 169
5.1.2.3 Example of Application of Subsidiary Task Method 171
5.1.3 Workload Measurement Based on Driving Performance 172
5.1.3.1 Overview 172
5.1.3.2 Steering Entropy (SE) Method 173
5.1.3.3 Real-time Steering Entropy (RSE) Method 175
5.1.3.4 Summary 178
5.2 HMI of In-car Information Systems 178
5.2.1 Interaction with a System 178
5.2.1.1 Design of Interaction 179
5.2.1.2 Tactile Feedback 179
5.2.1.3 Audio Interface 179
5.2.1.4 Integrated Controller 180
5.2.1.5 Internet Connection of In-car Devices 180
5.2.2 Route Navigation and Map Display 181
5.2.2.1 Volume of Graphic Information 181
5.2.2.2 Mental Map 181
5.2.2.3 Expression of Maps 183
5.2.2.4 Displaying Roads 184
5.2.2.5 Displaying Background 184
5.2.2.6 Presenting Text 185
5.2.2.7 Presenting Landmarks 186
5.2.2.8 Displaying Remaining Distance/Estimated Required Time 187
5.2.2.9 Displaying Routes 187
5.2.2.9.1 Turn by Turn Display 187
5.2.2.9.2 Route Display 187
5.2.2.9.3 Traffic Lane Display 188
5.2.2.9.4 Crossing Macrograph 188
5.2.2.9.5 Highway Map 188
5.2.2.9.6 Manoeuvre List 188
5.2.2.9.7 Guide Information to Support Safe Driving 190
5.2.2.10 Display of Traffic Information 190
5.2.3 Design of Menus 191
5.2.3.1 Menu-based Interaction 192
5.2.3.1.1 Fundamental Principles 192
5.2.3.1.2 Presentation and Selection of Menu Items 193
5.2.3.1.3 Strengths and Weaknesses of Menu-based Interaction 193
5.2.3.2 Design Guidelines 193
5.2.3.3 Evaluation Methods for Menu Designs 194
5.3 Assessment of Driver Distraction 194
5.3.1 Definition of Distraction 194
5.3.1.1 Characteristics of Attention and Related Definitions 195
5.3.1.2 Distraction

5.3.1.2.1 Suggested Definitions

5.3.1.2.2 Relation to Inattention

5.3.1.2.3 Relation to Arousal Level and Workload

5.3.1.3 Conclusion

5.3.2 Assumptions for Distraction Assessment

5.3.2.1 Information Processing and Distraction

5.3.2.2 Ideas and Types of Assessment Methods

5.3.2.2.1 Requirements for Assessment Methods

5.3.2.2.2 Types of Assessment Methods

(1) Primary task measurement and secondary (subsidary) task measurement
(2) Assumptions and notes for the secondary task measurement
(3) Secondary task measurement and dual task measurement
(4) Primary task and subsidiary/additional task

5.3.2.2.3 Conclusion

5.3.3 Visual-Manual Distraction Assessment

5.3.3.1 Direct Assessment

5.3.3.1.1 Visual Behavior

5.3.3.1.2 Driving Performance

5.3.3.2 Occlusion Method

5.3.4 Cognitive Distraction Assessment

5.3.4.1 Lane Change Test (LCT Method)

5.3.4.2 Detection Response Task (DRT Method)

5.3.4.3 Physiological Index

5.3.5 Reference Tasks in Distraction Assessment

5.3.5.1 Item Recognition Task

5.3.5.2 N-back Task

5.3.5.3 Calibration Task

5.3.5.4 Conclusion

5.3.6 Use of Cellular Phone while Driving

5.4 Interaction with Advanced Driver Assistance Systems

5.4.1 Presentation and Management of Information

5.4.1.1 Design of Warning Signal

5.4.1.1.1 Warning

5.4.1.1.2 Warning Compliance

5.4.1.1.3 Expected Driver’s Response

5.4.1.1.4 Warning Level and Warning Design

(1) Criticality and urgency

(2) Warning level

5.4.1.1.5 Basic Requirements for Warning Designs

(1) Visual presentation of warnings

(2) Impression given by the design of warning signals
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1.2</td>
<td>Influence of the Warning Signal on the Driver Behavior</td>
<td>221</td>
</tr>
<tr>
<td>5.4.1.2.1</td>
<td>Assessment of Effectiveness of the Warning System on the Avoidance of Danger</td>
<td>221</td>
</tr>
<tr>
<td>5.4.1.2.2</td>
<td>Hazard Avoidance Scenarios of Experiments</td>
<td>222</td>
</tr>
<tr>
<td>(1)</td>
<td>Effectiveness of warning systems</td>
<td>222</td>
</tr>
<tr>
<td>(2)</td>
<td>Assessment of the warning signal</td>
<td>222</td>
</tr>
<tr>
<td>5.4.1.2.3</td>
<td>Assessment of the Compliance with Warning/alerting Systems</td>
<td>223</td>
</tr>
<tr>
<td>(1)</td>
<td>Compliance</td>
<td>223</td>
</tr>
<tr>
<td>(2)</td>
<td>Example of assessment of effectiveness of seat belts reminders</td>
<td>223</td>
</tr>
<tr>
<td>5.4.1.3</td>
<td>Priority and Management of In-vehicle Information</td>
<td>225</td>
</tr>
<tr>
<td>5.4.1.3.1</td>
<td>Need for Information Management</td>
<td>225</td>
</tr>
<tr>
<td>5.4.1.3.2</td>
<td>Information Importance</td>
<td>226</td>
</tr>
<tr>
<td>5.4.1.3.3</td>
<td>Message Management</td>
<td>227</td>
</tr>
<tr>
<td>(1)</td>
<td>Selection and integration of the message to be presented (priority management)</td>
<td>227</td>
</tr>
<tr>
<td>(2)</td>
<td>Design consistency between messages from different systems</td>
<td>229</td>
</tr>
<tr>
<td>(3)</td>
<td>Display management</td>
<td>229</td>
</tr>
<tr>
<td>(4)</td>
<td>Presentation style management</td>
<td>229</td>
</tr>
<tr>
<td>(5)</td>
<td>Time management</td>
<td>229</td>
</tr>
<tr>
<td>5.4.1.4</td>
<td>Estimation of the Driving Demand or Workload for Message Management</td>
<td>229</td>
</tr>
<tr>
<td>5.4.1.4.1</td>
<td>Workload Manager in Information Management</td>
<td>229</td>
</tr>
<tr>
<td>5.4.1.4.2</td>
<td>Estimation of the Driving Demand based on the Road Traffic Environment</td>
<td>230</td>
</tr>
<tr>
<td>5.4.1.4.3</td>
<td>Estimation based on Automotive Sensor Signals of Driving Demand in Road Traffic Environment</td>
<td>231</td>
</tr>
<tr>
<td>5.4.1.4.4</td>
<td>Estimation of the Driving Workload in Real-time based on Sensor Signals</td>
<td>233</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Systems and Drivers</td>
<td>234</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Levels of Automation of Systems and Drivers</td>
<td>234</td>
</tr>
<tr>
<td>5.4.2.1.1</td>
<td>Automation of Systems</td>
<td>234</td>
</tr>
<tr>
<td>5.4.2.1.2</td>
<td>Levels of Automation</td>
<td>234</td>
</tr>
<tr>
<td>5.4.2.1.3</td>
<td>Examples of Level 1 to 3</td>
<td>234</td>
</tr>
<tr>
<td>5.4.2.1.4</td>
<td>Examples of Level 4 to 6</td>
<td>235</td>
</tr>
<tr>
<td>5.4.2.1.5</td>
<td>Examples of Level 6.5</td>
<td>235</td>
</tr>
<tr>
<td>5.4.2.1.6</td>
<td>Examples of Level 7</td>
<td>236</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Over-trust and Overdependence</td>
<td>236</td>
</tr>
<tr>
<td>5.4.2.3</td>
<td>Monitoring of the System Status by the Driver</td>
<td>239</td>
</tr>
</tbody>
</table>
5.4.2.3.1 Supervisory Control
5.4.2.3.2 HMI in Driving Supporting Systems
 Using V2X communication
 (1) Verification of operating status
 (2) Easy to understand
 (3) Communication certainty
 (4) Easy understanding of criticality
 (5) Prevention of over-trust and distrust
5.4.2.3.3 More General HMI in Driving Support/automated Driving Systems
5.4.2.4 Changes in Driver's Behavior Caused by Introduction of the System
5.4.2.4.1 Driving Behavior Induced by the System
5.4.2.4.2 Definition of Road/traffic Factors Influencing Driving Behavior
5.4.2.4.3 Example of Analysis of Behavioral Changes Caused by the System
5.4.2.5 Compatibility of the System with Drivers' Behavior
5.4.2.5.1 Distance without the System and Distance with the ACC System
5.4.2.5.2 Relation Between Drivers' Characteristics, Driving Behavior and the Distance Selected in the ACC
5.4.2.6 Human Factors in Automated Driving Systems
5.4.2.6.1 Intersection Between Automated Driving Systems and Humans
5.4.2.6.2 Understanding of the System
 (1) Understanding of system's functions
 (2) Understanding of the system status
 (3) Understanding of the system operation
 (4) Understanding of the behavior of the system
5.4.2.6.3 State of the Driver
 (1) State of the driver when using automated driving systems
 (2) Gap in the transition to the state where the driver is able to execute driving tasks
5.4.2.6.4 Value of Automated Driving Systems for Humans
5.4.2.6.5 Interaction Between the Car and other Traffic Participant
 (1) Communication between traffic participants
 (2) Communication functions that automated vehicles must have
References
6. Driver Behavior

6.1 Human Characteristics Related to Driver Behavior

6.1.1 Visual Cognitive Functions

6.1.1.1 Visual Attention and Its Psychological Measurements

6.1.1.1.1 Shift of Attention

6.1.1.1.2 Selection of Visual Information at a Fixation Point

6.1.1.1.3 Useful Field of View

6.1.1.2 Physiological Measurement of Attention

6.1.1.2.1 Attentional Resource Allocation and Event-related Potentials

6.1.1.2.2 Evaluation of Visual Attentional Resource Allocation using Eye-fixation-related Potentials

6.1.1.2.3 Evaluation of Attentional Resource Allocation Using Probe Methods

6.1.1.3 Visual Attentional Models

6.1.1.3.1 Saliency Model of Itti and Koch

6.1.1.3.2 Models that take Account of Top-down Factors

6.1.1.3.3 Application of Models to Moving Images

6.1.2 Information Processing and Cognitive Models for Humans

6.1.2.1 Driver Information Processing Models

6.1.2.1.1 Basic Three-stage Information Processing Models for Humans

6.1.2.1.2 Information-processing Model taking Account of Memory and Attention

6.1.2.1.3 Norman's Seven-stage Action Model

6.1.2.1.4 Situation Awareness Model

6.1.2.1.5 Hierarchical Model of Driving Behavior

6.1.2.1.6 Rasmussen's Skills-rules-knowledge (SRK) Model

6.1.2.1.7 Relationship Among Different Human Information-processing Models

6.1.2.1.8 Extended Contextual Control Model (E-COM)

6.1.2.2 Task-capability Interface Model

6.2 Driving Performance

6.2.1 Driving Performance Measures

6.2.1.1 Longitudinal Driving Performance

6.2.1.1.1 Velocity, Acceleration, and Jerk

6.2.1.1.2 Response Time

6.2.1.1.3 Headway Distance and Time

6.2.1.2 Lateral Driving Performance

6.2.1.2.1 Steering Operation

6.2.1.2.2 Steering Reversal

6.2.1.2.3 Steering Entropy
6.2.1.2.4 Lane Position of a Vehicle 282
6.2.1.2.5 Standard Deviation of Lane Position (SDLP) 282
6.2.1.2.6 Time to Line Crossing (TLC) 282

6.2.1.3 Parking Maneuver 283
6.2.1.3.1 Cognitive Function Necessary for Parking Maneuver 283
6.2.1.3.2 Prediction of One’s Capability for Park Maneuver based on the Psycho-motor Tests 283

6.2.1.4 Situation Awareness Evaluation Methods 284
6.2.1.4.1 Situation Awareness Global Assessment Technique (SAGAT) 285
6.2.1.4.2 Real-time Probe Technique 285
6.2.1.4.3 Subjective Rating (SART: Situation Awareness Rating Technique) 286

6.2.2 Driving Ability Evaluation for Elderly Drivers 287
6.2.2.1 Ability Evaluation of Driving Behavior 287
6.2.2.2 Evaluation of Perceptual-Motor Coordination 288
6.2.2.3 Evaluation of Cognitive Functions 289
 6.2.2.3.1 Neuro-psychological Tests and Driving Ability 289
 6.2.2.3.2 Screening Test for Elderly Drivers 291
6.2.2.4 Models of Driving Ability for Elderly People 291
 6.2.2.4.1 Multifactorial Model for Enabling Driving Safety 291
 6.2.2.4.2 Adaptive Driving Behavior of Elderly People 292

6.3 Driver’s Behavior Models 293
6.3.1 Driving Behavior Models 293
 6.3.1.1 Driver Steering Control Models 293
 6.3.1.1.1 Basics of Modeling 294
 6.3.1.1.2 Major Examples of Driver Steering Control Models 295
 (1) Preview-predictive model 295
 (2) Describing function model 296
 (3) Pursuit control model 297
 (4) Other models 297
 6.3.1.2 Model of Visual Recognition During Driving 297
 6.3.1.2.1 Perception of Direction of Travel 297
 6.3.1.2.2 Use of Tangent Points 298
 6.3.1.2.3 Use of Information on Near and Far Areas 299
 6.3.1.2.4 Effect of Gaze Direction 301
6.3.2 Information-processing Models Related to Driver’s Behavior 301
 6.3.2.1 Information-processing Models for Drivers Using Car Navigation System 301
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2.1.1</td>
<td>Information-processing Models for Drivers using a Digital Map System with Self-localization Function</td>
<td>302</td>
</tr>
<tr>
<td>6.3.2.1.2</td>
<td>Information-processing Models for Drivers using a Turn-by-turn Navigation System</td>
<td>304</td>
</tr>
<tr>
<td>6.3.2.1.3</td>
<td>Information-processing Models for Drivers using a Navigation System Capable of Displaying an Enlarged View of Intersection</td>
<td>305</td>
</tr>
<tr>
<td>6.3.2.2</td>
<td>ACT-R (Adaptive Control of Thought-Rational) Model of Driving Behavior</td>
<td>307</td>
</tr>
<tr>
<td>6.3.2.2.1</td>
<td>Driving Behavior and Integrated Driver Models with an ETA Framework Viewpoint</td>
<td>307</td>
</tr>
<tr>
<td>6.3.2.2.2</td>
<td>Integrated Driver Model using the ACT-R Cognitive Architecture (1) Control (2) Monitoring (3) Decision-making (4) Component integration and multitasking (5) Parameter values</td>
<td>308</td>
</tr>
<tr>
<td>6.3.2.2.4</td>
<td>Validation and Application ACT-R Model of Driving Behavior</td>
<td>312</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Statistical Behavior Models</td>
<td>312</td>
</tr>
<tr>
<td>6.3.3.1</td>
<td>Structural Equation Models for Driving Behavior</td>
<td>312</td>
</tr>
<tr>
<td>6.3.3.1.1</td>
<td>Structural Equation Models (SEM)</td>
<td>313</td>
</tr>
<tr>
<td>6.3.3.1.2</td>
<td>Structural Equation Model of Driving Behavior for Making a Turn</td>
<td>315</td>
</tr>
<tr>
<td>6.3.3.1.3</td>
<td>Application of Structural Equation Model to Theory of Planed Behavior</td>
<td>316</td>
</tr>
<tr>
<td>6.3.3.2</td>
<td>Bayesian Network Models for Driving Behavior</td>
<td>316</td>
</tr>
<tr>
<td>6.3.3.2.1</td>
<td>Bayesian Network Model</td>
<td>316</td>
</tr>
<tr>
<td>6.3.3.2.2</td>
<td>Dynamic Bayesian Network Model</td>
<td>317</td>
</tr>
<tr>
<td>6.3.3.3</td>
<td>Modeling Driving Behavior Using Hidden Markov Models</td>
<td>320</td>
</tr>
<tr>
<td>6.3.3.3.1</td>
<td>Theoretical Background of Modeling Driving Behavior Using HMM</td>
<td>320</td>
</tr>
<tr>
<td>6.3.3.3.2</td>
<td>Example of Constructing a Driving Behavior Model Using Discrete HMM</td>
<td>321</td>
</tr>
<tr>
<td>6.3.3.3.3</td>
<td>Estimation of Road Shape and Driving Behavior Using Continuous HMM</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>(1) Collection of driving signals and creation of corpus</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>(2) Estimation of driving behavior in relation to specific road shape</td>
<td>323</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.3.3.3.4 Estimating Driving Behavior Using HMM and other Applications</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>(1) Prediction of driving behavior</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>(2) Estimating characteristics of individuals</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>(3) Future direction and issues</td>
<td>324</td>
<td></td>
</tr>
</tbody>
</table>

References

Index

333