Sensor and Data Fusion for Intelligent Transportation Systems

Lawrence A. Klein

SPIE PRESS
Bellingham, Washington USA
Table of Contents

Preface xiii
Acronyms xv

1 Introduction

1.1 Applications to ITS 2
1.2 Data, Information, and Knowledge 5
1.3 Summary of Book Contents 6
References 8

2 Sensor and Data Fusion in Traffic Management

2.1 What is Meant by Sensor and Data Fusion? 12
2.2 Sensor and Data Fusion Benefits to Traffic Management 13
2.3 Data Sources for Traffic Management Applications 14
2.4 Sensor and Data Fusion Architectures 16
2.4.1 Architecture selection 16
2.4.2 Architecture classification 19
2.5 Detection, Classification, and Identification of a Vehicle 22
2.6 The JDL and DFIG Data Fusion Models 24
2.7 Level 1 Fusion: Detection, Classification, and Identification Algorithms 28
2.7.1 Physical models 29
2.7.2 Feature-based inference techniques 31
2.7.2.1 Parametric techniques 32
2.7.2.2 Information theoretic techniques 33
2.7.3 Cognitive-based models 44
2.7.3.1 Logical templates 45
2.7.3.2 Knowledge-based expert systems 45
2.7.3.3 Fuzzy set theory 46
2.8 Level 1 Fusion: State Estimation and Tracking Algorithms 47
2.8.1 Prediction gates, correlation metrics, and data association 49
2.8.2 Single- and two-level data and track association 50
2.8.3 Deterministic and probabilistic (all-neighbor) association 51
2.9 Data Fusion Algorithm Selection 51
2.10 Level 2 and Level 3 Fusion Processing 52
2.10.1 Level 2 processing 52
Table of Contents

2.10.2 Level 3 processing 53
2.10.3 Situation awareness 54
2.10.4 Application to connected and self-driving vehicles 57

2.11 Level 4 Fusion Processing 59
2.12 Level 5 Fusion Processing 62

2.13 Applications of Sensor and Data Fusion to ITS 68
2.13.1 Advanced Transportation Management Systems 68
2.13.2 Automatic incident detection 69
2.13.3 Network control 70
2.13.4 Advanced traveler information systems 72
2.13.5 Advanced driver assistance systems 74
2.13.6 Crash analysis and prevention 75
2.13.7 Traffic demand estimation 76
2.13.8 Traffic forecasting and traffic monitoring 77
2.13.9 Position and heading estimation 79
2.13.9.1 GPS–INS applications to ITS 79
2.13.9.2 GPS modernization program 81

2.14 Summary 83
References 84

3 Bayesian Inference for Traffic Management 99
3.1 Bayesian Inference 99
3.2 Derivation of Bayes’ Theorem 100
3.3 Likelihood Function and Prior Probability Models 102
3.4 Monty Hall Problem 104
3.4.1 Case-by-case analysis solution 104
3.4.2 Conditional probability solution 105
3.4.3 Bayesian inference solution 106
3.5 Application of Bayes’ Theorem to Cancer Screening 108
3.6 Bayesian Inference in Support of Data Fusion 110
3.7 Bayesian Inference Applied to Vehicle Identification 113
3.8 Bayesian Inference Applied to Freeway Incident Detection Using Multiple-Source Data 117
3.8.1 Problem development 118
3.8.2 Numerical example 121
3.9 Bayesian Inference Applied to Truck Classification 123
3.9.1 MCS architecture 123
3.9.2 MCS operation 125
3.9.3 Data collection and conclusions 126
3.10 Causal Bayesian Networks 127
3.10.1 Directed acyclic graphs 128
3.10.1.1 Underlying theory 128
3.10.1.2 Statistical implications 129
3.10.2 Application to maneuver-based trajectory prediction and criticality assessment 130
 3.10.2.1 Maneuver detection 131
 3.10.2.2 Trajectory prediction 132
 3.10.2.3 Maneuver model combination and criticality assessment 133

3.11 Summary 134
References 135

4 Dempster–Shafer Evidential Reasoning for Traffic Management 137
 4.1 Overview of the Process 137
 4.2 Implementation of the Method 138
 4.3 Support, Plausibility, and Uncertainty Interval 139
 4.4 Dempster's Rule for Combining Multiple-Sensor Data 143
 4.5 Vehicle Detection Using Dempster–Shafer Evidential Reasoning 144
 4.5.1 Dempster's rule applied to compatible data sets 144
 4.5.2 Dempster's rule with null set elements 146
 4.5.3 Dempster's rule with singleton propositions 147
 4.6 Singleton Proposition Vehicle Detection Problem Solved with Bayesian Inference 148
 4.7 Constructing Probability Mass Functions 149
 4.7.1 Knowledge of sensor operation and object signature characteristics 149
 4.7.2 Known probability distributions for the parameters of interest 151
 4.7.3 Confusion matrix creation 151
 4.7.4 Number and degree of matching of features to those of objects of interest 152
 4.7.5 Exponential probability mass model 152
 4.8 Decision Support System Application of Dempster–Shafer Reasoning 153
 4.8.1 Field test description 153
 4.8.2 Field test conclusions 155
 4.9 Comparison with Bayesian Inference 155
 4.10 Modifications to the Original Dempster–Shafer Method 157
 4.11 Summary 158
References 159

5 Kalman Filtering for Traffic Management 163
 5.1 Optimal Estimation 163
 5.2 Kalman Filter Application to Object Tracking 164
 5.3 State Transition Model 165
 5.4 Measurement Model 166
 5.4.1 Measurement error-covariance matrix for a 3D and 2D problem 167
 5.4.2 Object in straight-line motion 168
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>The Discrete-Time Kalman Filter Algorithm</td>
<td>169</td>
</tr>
<tr>
<td>5.6</td>
<td>Relation of Measurement-to-Track Correlation Decision to the Kalman Gain</td>
<td>174</td>
</tr>
<tr>
<td>5.7</td>
<td>Initialization and Subsequent Recursive Operation of the Kalman Filter</td>
<td>175</td>
</tr>
<tr>
<td>5.8</td>
<td>The α-β Filter</td>
<td>179</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Application and relation to Kalman gain</td>
<td>179</td>
</tr>
<tr>
<td>5.8.2</td>
<td>α-β filter equations for state estimate prediction and correction</td>
<td>180</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Noise reduction and transient response properties of the α-β filter</td>
<td>180</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Expressions for β as a function of α</td>
<td>181</td>
</tr>
<tr>
<td>5.9</td>
<td>Kalman Gain Control Methods</td>
<td>182</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Preventing the gain from becoming too small</td>
<td>182</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Preventing the gain from becoming too large</td>
<td>184</td>
</tr>
<tr>
<td>5.10</td>
<td>Noise Covariance Values and Filter Tuning</td>
<td>185</td>
</tr>
<tr>
<td>5.11</td>
<td>Process Noise Covariance Matrix Models</td>
<td>185</td>
</tr>
<tr>
<td>5.11.1</td>
<td>Constant-velocity object process noise model</td>
<td>186</td>
</tr>
<tr>
<td>5.11.2</td>
<td>Constant-acceleration object process noise model</td>
<td>188</td>
</tr>
<tr>
<td>5.12</td>
<td>Interacting Multiple Model for Vehicle Motion on a Roadway</td>
<td>189</td>
</tr>
<tr>
<td>5.12.1</td>
<td>Kinematic models</td>
<td>189</td>
</tr>
<tr>
<td>5.12.2</td>
<td>IMM implementation</td>
<td>190</td>
</tr>
<tr>
<td>5.12.3</td>
<td>Test results</td>
<td>192</td>
</tr>
<tr>
<td>5.13</td>
<td>Extended Kalman Filter</td>
<td>193</td>
</tr>
<tr>
<td>5.14</td>
<td>Summary</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>197</td>
</tr>
<tr>
<td>6</td>
<td>State of the Practice and Research Gaps</td>
<td>201</td>
</tr>
<tr>
<td>6.1</td>
<td>Data Fusion State of the Practice</td>
<td>201</td>
</tr>
<tr>
<td>6.2</td>
<td>Need for Continued Data Fusion Research</td>
<td>202</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Reliability and quality of input data to the fusion system</td>
<td>203</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Security of the data fusion system</td>
<td>204</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>Public key infrastructure systems</td>
<td>204</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>Limitations of existing PKI systems</td>
<td>205</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Fusion of hard and soft data</td>
<td>205</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>Attributes of hard and soft data</td>
<td>206</td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>Analyzing soft data</td>
<td>207</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Assessing the fusion system using measures of performance</td>
<td>208</td>
</tr>
<tr>
<td>6.2.4.1</td>
<td>Adaptive nature of MoPs</td>
<td>208</td>
</tr>
<tr>
<td>6.2.4.2</td>
<td>MoP dependence on number of objects of interest</td>
<td>208</td>
</tr>
<tr>
<td>6.2.4.3</td>
<td>MoEs for information fusion</td>
<td>209</td>
</tr>
<tr>
<td>6.2.4.4</td>
<td>MoEs for risk management</td>
<td>210</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Ground truth</td>
<td>212</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Commercial database management system and operating system suitability</td>
<td>212</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Design for worst-case data transmission and processing scenarios</td>
<td>213</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Additional research needs</td>
<td>214</td>
</tr>
<tr>
<td>6.3</td>
<td>Prerequisite Information for Level 1 Object Assessment Algorithms</td>
<td>215</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Appendix: The Fundamental Matrix of a Fixed Continuous-Time System</td>
<td>223</td>
</tr>
</tbody>
</table>

Index | 227 |