Plant–Soil Slope Interaction

Charles W. W. Ng
Anthony K. Leung
Junjun Ni
Contents

Preface ix
Acknowledgments xi
Authors xvii
List of notations xix
List of nomenclature xxiii

1 Introduction 1

1.1 Role of vegetation in civil engineering 1
1.2 Fundamentals of unsaturated soil mechanics 2
1.3 Energy balance, water, carbon and nutrient cycles in a soil-plant-atmosphere system 4
1.3.1 Energy balance 4
1.3.2 Water balance 5
1.3.3 Carbon cycle 7
1.3.4 Photosynthesis and respiration of plants 8
1.3.5 Nutrient cycles 9
1.4 Water absorption and transportation mechanism of vascular plants 11
1.4.1 Mechanisms of root water uptake 12
1.4.2 Mechanisms of water transport from roots to leaves 12
1.4.3 Repair of xylem cavitation 14
1.5 Structure of the book 15

2 Hydrological effects of plant on matric suction 17

2.1 Introduction 17
2.2 Factors contributing to transpiration-induced suction 17
2.2.1 Atmospherically controlled plant room 17
2.2.2 Effects of soil density on plant growth and induced suction 20
2.2.2.1 Grass characteristics 21
2.2.2.2 Water infiltration rate 22
2.2.2.3 Induced suction distribution 22
2.2.3 Effects of plant density on plant growth and induced suction 24
2.2.3.1 Above-ground plant characteristics 24
2.2.3.2 Below-ground plant characteristics 26
2.2.3.3 Suction induced during evapotranspiration 29
vi Contents

2.2.3.4 Water infiltration rate 30
2.2.3.5 Suction preserved during rainfall 31
2.2.4 Effects of CO₂ on plant growth and induced suction 33
2.2.4.1 Plant characteristics 34
2.2.4.2 Induced matric suction 35
2.3 Correlating plant traits with induced soil suction 36
2.3.1 Plant traits and physiological responses 37
2.3.2 Relationships between plant traits and induced suction 37
2.4 Root-induced changes in soil hydraulic properties 43
2.4.1 Water retention curve of vegetated soil 43
2.4.1.1 Soil vegetated with grass 43
2.4.1.2 Soil vegetated with tree 45
2.4.2 Water permeability function 48
2.5 Chapter summary 49

3 Mechanical effects of plant root reinforcement 51
3.1 Introduction 51
3.2 Revisiting the power decay law 51
3.2.1 The state of the art 51
3.2.2 Root tensile behaviour of species native to temperate Europe 52
3.2.3 Inter-species variability 57
3.2.4 Strength-diameter relationships 57
3.3 Root tensile behaviour 58
3.3.1 Four plant species native to southern China 58
3.3.2 Root sampling and measurement of root area ratio (RAR) 60
3.3.3 Root tensile force 62
3.4 Effects of fungi on root biomechanics 64
3.4.1 Actions of fungi on cellulose 64
3.4.2 Effects of the AMF colonisation rate on plant biomass 64
3.4.3 Effects of AMF on root biomechanical properties 66
3.4.4 Potential mechanisms 68
3.5 Chapter summary 69

4 Field studies of plant transpiration effects on ground water flow and slope deformation 71
4.1 Introduction 71
4.2 Case study 1: Compacted sandy ground at HKUST Eco-Park 71
4.2.1 Plant effects on the infiltration rate 71
4.2.2 Effects of plant variability on the infiltration rate 74
4.2.3 Effects of mixed tree-grass planting on plant growth and soil hydrology 76
4.2.3.1 Observed plant traits 77
4.2.3.2 Effects of tree spacing on saturated water permeability (k_s) 81
4.2.3.3 Effects of tree spacing on the transpiration-induced suction response 81
4.2.3.4 Effects of tree spacing on the suction response during rainfall 83
4.3 Case study 2: A cut slope of expansive clay slope in Zaoyang, China 85
4.3.1 Grass effects on infiltration characteristics 88
4.3.2 Grass effects on soil pore-water pressure 89
4.4 Case study 3: A natural saprolitic hillslope in Hong Kong 91
4.4.1 Plant-induced changes in soil hydrology 95
4.4.2 Plant effects on slope hydrological responses 97
4.4.3 Transpiration effects on the stress-deformation characteristic of the slope 98
4.4.3.1 During the rainstorm from 5 to 9 June 2008 98
4.4.3.2 During the dry season 101
4.5 Chapter summary 102

5 Theoretical modelling of plant hydrological effects on matric suction and slope stability 105
5.1 Introduction 105
5.2 Plant transpiration-induced changes in matric suction and slope stability 106
5.2.1 Governing equations 106
5.2.2 Steady-state solutions 109
5.2.3 Transient-state solutions 113
5.2.4 Root architecture effects on soil matric suction 114
5.2.4.1 Effects of root architecture on steady-state PWP 114
5.2.4.2 Effects of root architecture on transient-state PWP 115
5.2.4.3 Effects of root depth 116
5.2.5 Root architecture effects on slope stability 117
5.3 Root-induced changes in soil hydraulic properties 118
5.3.1 Theoretical modelling 118
5.3.2 Plant effects on matric suction 121
5.3.3 Plant effects on slope stability 122
5.4 Chapter summary 124

6 Effects of plant on slope hydrology, stability and failure mechanisms: Geotechnical centrifuge modelling 127
6.1 Introduction 127
6.1.1 Fundamental principles of centrifuge modelling 127
6.1.2 The state-of-the-art geotechnical centrifuge at HKUST 129
6.1.3 Centrifuge modelling of the behaviour of vegetated slopes 129
6.2 Mechanical root reinforcement of soil slopes 131
 6.2.1 Performance of bare slopes 132
 6.2.2 Effects of mechanical root reinforcement on slope stability and failure mechanisms 134
 6.2.2.1 Observation of slope failure mode 134
 6.2.2.2 Slope stability back-analysis 134

6.3 Artificial roots for modelling both plant hydrological and mechanical effects 136
 6.3.1 Design and working principle 136
 6.3.2 Performance of the root system 138

6.4 Effects of transpiration on root pull-out resistance 142
 6.4.1 Effects of root architecture on the PWP distribution (i.e., matric suction) 142
 6.4.2 Effects of transpiration-induced suction on pull-out resistance 144
 6.4.3 Effects of root architecture on pull-out resistance 145

6.5 Plant hydro-mechanical effects on slope behaviour 146
 6.5.1 Effects of plant root architecture on slope hydrology 147
 6.5.1.1 Responses of pore-water pressure during the simulation of transpiration 147
 6.5.1.2 Responses of pore-water pressure during rainfall 149
 6.5.2 Plant effects on slope stability 152
 6.5.3 Effects of root architecture on the failure mechanisms of 60° slopes 155

6.6 Chapter summary 157

References 159

Author index 175

Subject index 179