F R E I B E R G E R F O R S C H U N G S H E F T E Herausgegeben vom Rektor der TU Bergakademie Freiberg

B 381 Werkstoffwissenschaft/Werkstofftechnologie

On the stability of metastable phases in nanoscaled TiN/(Al,Ti)N multilayers

Ulrike Ratayski

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Contents

Introduction				
1	Titanium - Aluminium - Nitride	3		
	1.1 Overview - the historic role of $Ti_{1-x}Al_xN$	3		
	1.2 Crystalline phases in the Ti-Al-N system	4		
	1.2.1 The stable modifications of TiN and AlN	4		
	1.2.2 Metastable phases in the TiN-AlN system	6		
	1.3 Thermodynamic assessment of the TiN-AlN system	8		
	1.3.1 Thermodynamic stability of TiN and AlN modifications \ldots .	8		
	1.3.2 The pseudobinary phase diagram of TiN-AlN	10		
	1.4 A brief review on $Ti_{1-x}Al_xN$ thin films and TiN/AlN multilayers	14		
	1.4.1 Monolithic $Ti_{1-x}Al_xN$ coatings	14		
	1.4.2 TiN/AlN multilayer coatings	19		
2	X-ray scattering by low-dimensional structures	21		
	2.1 Wide-angle X-ray scattering	21		
	2.1.1 X-ray line profile fitting	22		
	2.1.2 Microstructure parameters enclosed in the peak position	23		
	2.1.3 Microstructure parameters enclosed in the integral width	29		
	2.2 Small-angle X-ray scattering	30		
	2.2.1 The dynamical (optical) theory applied to low-dimensional structures	31		
	2.2.2 The semikinematical theory	34		
	2.2.3 Effect of interface corrugation on specular X-ray reflection	35		
	2.2.4 Diffusely scattered intensities	36		
3	Experimental details	39		
	3.1 Preparation by cathodic arc evaporation	39		
	3.1.1 $Ti_{1-x}Al_xN$ monolithic coatings $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	39		
	3.1.2 TiN/(Al,Ti)N multilayer coatings	41		
	3.2 Laboratory details on the heat treatment procedure	42		
		vii		

	3.3	Electron probe microanalysis	44
	3.4	Laboratory setup for X-ray diffraction experiments	45
	3.5	Investigations by transmission electron microscopy	47
		3.5.1 Energy-dispersive X-ray spectroscopy	47
		3.5.2 Electron-energy loss spectroscopy	48
	3.6	In-situ characterization by synchrotron experiments	52
4	Mi	crostructure and properties of monolithic $\mathrm{Ti}_{1-x}\mathrm{Al}_x\mathrm{N}$ thin films .	55
	4.1	Microstructure of as-deposited $Ti_{1-x}Al_xN$ thin films	55
		4.1.1 Effect of the sample position on the chemical composition and the	
		deposition rate	56
		4.1.2 Phase composition and microstructure properties	59
		4.1.3 Mechanical properties of as-deposited monolithic ${\rm Ti}_{1-x}{\rm Al}_x{\rm N}$ coatings	71
	4.2	Thermal stability of $Ti_{1-x}Al_xN$ coatings deposited by CAE	72
		4.2.1 The fcc-Ti _{1-x} Al _x N phase affected by the annealing temperature	72
		4.2.2 Reduction of the chemical fluctuations in $Ti_{1-x}Al_xN$ coatings	75
		4.2.3 Mechanical properties	78
5	Pr	eparation of periodical composition fluctuations in ${ m Ti}_{1-x}{ m Al}_x{ m N}$	
	coa	atings	81
	5.1	Implementation of periodical composition fluctuations	81
	5.2	Design and development of periodic structure model applied to SAXS	
		analysis	82
	5.3	TiN/(Al,Ti)N multilayers prepared at identical cathode currents	84
		5.3.1 Chemical and phase composition of as-deposited multilayers	86
		5.3.2 Microstructure of Ti- and Al-rich domains	87
	5.4	The role of the cathode current applied to the Al cathode	94
		5.4.1 Chemical and phase composition affected by I_{Al}	95
		5.4.2 Solubility of Al in fcc-(Ti,Al)N affected by I_{Al}	97
		5.4.3 Multilayer architecture of TiN/(Al,Ti)N affected by I_{Al}	99
		5.4.4 Interfaces in nanoscaled TiN/(Al,Ti)N coatings	107
	5.5	5 The role of the cathode current applied to the Ti cathode	108
		5.5.1 Chemical and phase composition affected by I_{Ti}	109
		5.5.2 Solubility of Al in the fcc-(Ti,Al)N affected by I_{Ti}	112
		5.5.3 Multilayer architecture affected by I_{Ti}	114
		5.5.4 The origin of the pseudo cubic phase in TiN/(Al,Ti)N multilayers .	117

	5.6 Formation of lattice strains in TiN/AlN multilayer coatings $\ . \ . \ . \ .$	128
6	The thermal stability of TiN/(Al,Ti)N multilayers	133
	6.1 Covered chemical composition and temperature region	133
	6.2 Strain-induced stabilization of fcc-(Ti,Al)N in multilayer coatings \ldots .	135
	6.2.1 Thermally activated solubility of Al in the fcc-(Ti,Al)N phase	136
	6.2.2 Conservation of the multilayer architecture	138
	6.2.3 Effect of the local lattice strain in multilayers	140
	6.3 Thermally activated transition of metastable phases in $TiN/(Al,Ti)N$	
	coatings	143
	6.3.1 Thermal activated microstructure evolution in TiN/(Al,Ti)N	
	multilayers	143
	6.3.2 Conservation of the multilayer architecture	148
7	Conclusions and perspectives	151
Aj	ppendix	Ι
A	The elastic modulus body	III
в	Dislocation contrast factors	V
С	Species flux affected by I_{Al} and I_{Ti}	VII
Re	eferences	XXII