3.4 Types of Bonds

- Metallic Bonding and General Properties of Metals
 - Conductivity and Mobility of Electrons
 - Luster and Free Electron Irradiation
 - Malleability, Cohesive Force, Number of Valence Electrons
 - Theories of Bonding in Metals
 - Free Electron Theory
 - Bond Lengths
 - Crystal Structures of Metals (Metallic Structures)
 - Alloy and Metallic Compounds

3.5 Metallic Bonding and General Properties of Metals

- Conductivity and Mobility of Electrons
- Luster and Free Electron Irradiation
- Malleability, Cohesive Force, Number of Valence Electrons
- Theories of Bonding in Metals
- Free Electron Theory
- Bond Lengths
- Crystal Structures of Metals (Metallic Structures)
- Alloy and Metallic Compounds

3.6 Ionic Bonding

- Lattice Energy and Cohesion of Atomic Lattice
- Born-Haber Cycle and Heat of Formation
- Ionic Crystal Structures and the Radius Ratio
- Stoichiometric and Nonstoichiometric Defects
- Ionic Character and Covalency
 - Interference
- Ionic Character and Melting Point
- Solubility of the Ionic Salts

3.7 Covalent Bonding

- The Lewis Structures and Octet Rule
- Exceptions to the Octet Rule
- Bonding and Polarity

3.8 Coordinate Covalent Bond (Dative Bonding)

- Coordination Number and the "18-Electron Rule"
- Ligand Denticity
- Nomenclature of Complexes
- Complex Formation
- Coordinative Comproportionation
 - Reaction
- Complexation Equilibrium
- Multiligand Complexation
- Stepwise Formation Constants and the Sequential Analysis
- Complex Stability
- Hard and Soft Interactions, HSAB
- Chemical Features of Hard and Soft Ions, and Classification
- Rule of Interactions
- Hard-Hard and Soft-Soft Interactions
- Hard-Soft Interaction and Anion Polarizability
- Chelate Effect
- Entropy and Chelate Formation
- Stability and the Geometry of the Chelate Ring

3.9 Intermolecular Interactions

- van der Waals Forces
- Ion-Induced Dipole Forces, Ion-Dipole Forces, and Hydrogen Bonding

3.10 Covalent Networks and Giant Molecules

- Graphite, Fullerenes, Graphene, Carbon Nanotubes, and Asbestos

4. Molecular Symmetry

4.1 Molecular Symmetry

- Identity, \(E \)
- Proper Rotation Axis, \(C_n \)
- Plane of Symmetry, \(\sigma \)
- Center of Symmetry, \(i \)
- \(S_n \): Improper Rotation Axis

4.2 The Symmetry Elements

- Dipole Moments and Polarity
- Chirality
- Equivalent Atoms: (Or Group of Atoms)
- Crystal Symmetry

4.3 The Symmetry and Point Group

- Some Immediate Applications

4.4 Some Immediate Applications

- Dipole Moments and Polarity
- Chirality
- Equivalent Atoms: (Or Group of Atoms)
- Crystal Symmetry

4.5 Group Theory: Properties of the Groups and Their Elements

- Group Theory: Properties of the Groups and Their Elements

4.6 Similarity Transforms, Conjugation, and Classes

- Matrices and Vectors

4.7 Matrix Representation

- Matrices and Vectors
- Matrix Representation of Symmetry Operation
- Matrix Representation of Point Group

4.8 Motion Representations of the Groups

- Translation Motion
- Rotational Motion

4.9 Symmetry Properties of Atomic Orbitals

- Mullikian Notation
- Atomic Orbital Representation
4.10 Character Tables 269
 Properties of the Characters of Representations 270
4.11 Relation Between any Reducible and Irreducible Representations 272
 The Direct Product 274
4.12 Group Theory and Quantum Mechanics: Irreducible Representations and Wave Function 275
 Suggestions for Further Reading 280

5. Valence Bond Theory and Orbital Hybridization
 5.1 Valence Bond Theory 282
 5.2 VSEPR Theory and Molecular Geometry 283
 5.3 Isoelectronic Species 284
 5.4 Procedures to Diagram Molecular Structure 284
 5.5 Valence Bond Theory and Metallic Bonds 288
 5.6 Rehybridization and Complex Formation 291
 5.7 Hybridization and \(\sigma-/\pi\)-Bonding 294
 5.8 Orbital Hybridization and Molecular Symmetry 296
 5.9 Hybrid Planar Hybridization 296
 The Extend of d-Orbital Participation in Molecular Bonding 301
 Trigonal Bipyramidal Hybridization 301
 Tetragonal Pyramidal Hybridization 303
 Square Planar Hybridization 304
 Tetrahedral Hybridization 306
 Octahedral Hybridization 308
 5.10 Hybrid Orbitals as Symmetry
 Adapted Linear Combination of Atomic Orbitals (SALC) 311
 5.11 Molecular Wave Function as Symmetry
 Adapted Linear Combination of Atomic Orbitals (SALC) 322
 Suggestions for Further Reading 330

6. Molecular Orbital Theory
 6.1 Molecular Orbital Theory Versus Valence Bond Theory 332
 6.2 Molecular Orbital Wave Function and Symmetry 333
 6.3 The Linear Combination of Atomic Orbitals-Molecular Orbital (LCAO-MO) and Hückel Approximations 333
 6.4 Atomic Orbitals Combinations for the Second Row Diatomic Molecules 338
 6.5 Heterodiatomic Molecules 347
 6.6 Polyatomic Molecules 349
 6.7 Molecular Orbitals for a Centric Molecule 351
 6.8 Properties Derived From Molecular Wave Function 366
 6.9 Band Theory: Molecule Orbital Theory and Metallic Bonding Orbit 394
 6.10 Conductors, Insulators, and Semiconductors 397
 Suggestions for Further Reading 401

7. Crystal Field Theory
 7.1 The Advantages and Disadvantages of Valence Bond Theory 405
 7.2 Bases of Crystal Field Theory 405
d-Orbitals in Cubic Crystal Field 405
f-Orbitals in Cubic Crystal Field 406
 7.3 The Crystal Field Potential 407
 Octahedral Crystal field Potential, \(V_{\text{Oct}}\) 407
 Square Planar Crystal Field Potential, \(V_{\text{S-P}}\) 412
 Tetragonal Crystal Field Potential, \(V_{\text{Tetrag}}\) 415
 Tetrahedral Crystal Field Potential, \(V_{\text{Td}}\) 417
 7.4 Zero-Order Perturbation Theory 419
 The Linear Combination of Atomic Orbitals, LCAO-MO, and Energy Calculation 419
 The Perturbation Theory for Degenerate Systems 421
 The Splitting of d-Orbitals in Octahedral Crystal Field, \(V_{\text{Oct}}\) 423
 The Splitting of d-Orbitals in Tetrahedral Crystal Field, \(V_{\text{Td}}\) 430
 The Splitting of d-Orbitals in Tetragonal Crystal Field, \(V_{\text{Tetrag}}\) 435
 7.5 Types of Interactions That Affect the Crystal Field Treatment 442
 7.6 Free Ion in Weak Crystal Fields 442
 Problems and the Required Approximations 442
 The Effect of the Crystal Field on S Term 442
 The Effect of the Cubic Crystal Field on P Term 442
 The Effect of a Cubic Crystal Field on D Term 446
 The Effect of a Cubic Crystal Field on F Term 447
 The Effect of a Cubic Crystal Field on G, H, and I 455
 7.7 Strong Field Approach 457
 Determinantal Wave Functions 457
 The Determinantal Wave Functions of \(d^2\) in Strong Field of Tetragonal Structure, Trans-ML\(_4\)Z\(_2\) 457
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>458</td>
<td>The Symmetry and the Energy of Determinant Wave Functions of D² in a Strong Field of Trans-ML₄Z₂</td>
</tr>
<tr>
<td>459</td>
<td>The Appropriate Hamiltonian in Strong Field</td>
</tr>
<tr>
<td>460</td>
<td>The Diagonal Interelectronic Repulsion</td>
</tr>
<tr>
<td>463</td>
<td>The Nondiagonal Interelectronic Repulsion and the Energy of Each Level of the d² Configuration in Strong Field of Trans-ML₄Z₂</td>
</tr>
<tr>
<td>470</td>
<td>Suggestions for Further Reading</td>
</tr>
</tbody>
</table>

8. Ligand Field Theory

8.1 The Advantages and Disadvantages of Crystal Field Theory 472

8.2 Symmetry and Orbital Splitting by Ligand Field 473

8.3 Correlation Table 478

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital Correlation Table</td>
<td>478</td>
</tr>
<tr>
<td>Term Correlation Tables</td>
<td>480</td>
</tr>
</tbody>
</table>

8.4 Correlation Diagrams of Strong and Weak Fields 481

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Diagram of Strong and Weak Field States of Oₙ</td>
<td>481</td>
</tr>
<tr>
<td>Method of Descending Symmetry (Descending Multiplicities of the Orbital States)</td>
<td>485</td>
</tr>
<tr>
<td>Correlation Diagram of Weak and Strong Field States of T_d</td>
<td>486</td>
</tr>
</tbody>
</table>

8.5 Orgel Diagram 488

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orgel Diagram of D Term Configuration</td>
<td>488</td>
</tr>
<tr>
<td>Orgel Diagram of F Term</td>
<td>489</td>
</tr>
<tr>
<td>Configuration and Term Interactions</td>
<td>493</td>
</tr>
</tbody>
</table>

8.6 Tanabe-Sugano Diagrams 498

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Advantages</td>
<td>498</td>
</tr>
<tr>
<td>dⁿ and d¹⁰⁻ⁿ Diagrams</td>
<td>499</td>
</tr>
<tr>
<td>d³ Diagram</td>
<td>502</td>
</tr>
</tbody>
</table>

| Suggestions for Further Reading | 503 |

9. Vibrational Rotational Spectroscopy

9.1 Infrared and Raman Spectroscopy 507

9.2 Permanent Dipole and Polarizability 509

9.3 The Classical Explanation of Infrared and RAMAN Spectroscopy 509

9.4 Rotation of Diatomic Molecules 511

<table>
<thead>
<tr>
<th>Models</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid and Nonrigid Models</td>
<td>514</td>
</tr>
</tbody>
</table>

9.5 Vibration of Diatomic Molecules 515

<table>
<thead>
<tr>
<th>Levels</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrational Energy Levels</td>
<td>516</td>
</tr>
<tr>
<td>Anharmonic Oscillation</td>
<td>521</td>
</tr>
</tbody>
</table>

9.6 The Quantum Mechanics of the Translation, Vibration, and Rotation Motions 523

9.7 Vibration-Rotation Energies of Diatomic Molecules (Vibrational-Rotational State) 529

<table>
<thead>
<tr>
<th>Spectra</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis of the Selection Rules</td>
<td>592</td>
</tr>
<tr>
<td>Selection Rules</td>
<td>593</td>
</tr>
</tbody>
</table>

9.8 Vibrations of Polyatomic Molecules 532

9.9 Polyatomic Molecular Motions and Degrees of Freedom 532

9.10 Normal Modes of Vibration, Normal Coordinates, and Polyatomic Molecules 533

9.11 Vibriational Energy of Polyatomic Molecules 536

9.12 Vibrational Displacements 536

9.13 Vibrational Energy and Normal Coordinates 537

9.14 Stretching Vibrations of Linear Molecules 543

9.15 Symmetry and Normal Modes of Vibration 545

9.16 Assigning the Normal Modes of Vibration 549

| Normal Modes of Vibration for Linear Triatomic Molecule | 552 |

9.17 Force Constants and the GF-Matrix Method 555

| Lagrange's Equation in Terms of Symmetry Coordinates | 565 |

9.18 Selection Rules 568

| IR-Selection Rules | 568 |
| Raman Selection Rules | 571 |

9.19 Center of Symmetry and the Mutual Exclusion Rule 575

9.20 Isolation of a Particular Type of Motion 576

9.21 Detecting the Changes of Symmetry Through Reaction 581

| Suggestions for Further Reading | 582 |

10. Electronic Spectroscopy

10.1 Beer-Lambert Law 587

| Molar Extinction Coefficient, Oscillator Strength, and Dipole Strength | 587 |

10.2 Allowed Electronic Transition 589

The Transition Moment and Electronic Transitions	589
The Born-Oppenheimer Approximation	590
Even and Odd Functions and the Symmetry Considerations	590
Symmetry Representations and the Allowed Transitions	591

10.3 Basis of the Selection Rules 592

| Selection Rules | 593 |
| Spin, Orbital, and Vibrational Constraints | 593 |

10.5 Unexpected Weak Absorbance 595

10.6 Spectroscopy of Electronic Excitations 597