Three-Dimensional Microscopy: Image Acquisition and Processing

Carol J. Cogswell
Kjell Carlsson
Chairs/Editors

7–8 February 1994
San Jose, California

Sponsored by
IS&T—The Society for Imaging Science and Technology
SPIE—The International Society for Optical Engineering

Published by
SPIE—The International Society for Optical Engineering

Volume 2184

SPIE (The Society of Photo-Optical Instrumentation Engineers) is a nonprofit society dedicated to the advancement of optical and optoelectronic applied science and technology.
Contents

vii Conference Committee
ix Introduction

SESSION 1 INSTRUMENTATION FOR 3D MICROSCOPY

2 Three-dimensional chemical imaging with a confocal scanning laser Fourier transform–Raman microscope [2184-01]
C. J. H. Brenan, I. W. Hunter, McGill Univ. (Canada)

9 Acousto-optically scanned video-rate image dissector tube confocal microscope suitable for use with multiple wavelengths [2184-02]
T. Hubin, AO Systems Design; S. R. Goldstein, T. G. Smith, Jr., National Institutes of Health

21 Using intensity-modulated scanning beams in combination with lock-in detection for recording multiple-labeled fluorescent specimens in confocal laser microscopy [2184-03]
K. Carlsson, N. R. Åslund, K. Mossberg, J. Philip, Royal Institute of Technology (Sweden)

30 Mirror deflection control for a confocal scanning laser microscope employing a time-modulated laser and a linear diode array [2184-04]
N. R. Åslund, A. Patwardhan, O. Trepte, Royal Institute of Technology (Sweden)

39 Scanned optical fiber confocal microscope [2184-05]

48 High-resolution, multiple optical mode confocal microscope: I. System design, image acquisition, and 3D visualization [2184-06]
C. J. Cogswell, K. G. Larkin, J. W. O’Byrne, M. R. Arnison, Univ. of Sydney (Australia)

55 High-resolution, multiple optical mode confocal microscope: II. Theoretical aspects of confocal transmission microscopy [2184-07]
K. G. Larkin, C. J. Cogswell, J. W. O’Byrne, M. R. Arnison, Univ. of Sydney (Australia)

SESSION 2 TIME-RESOLVED FLUORESCENCE

66 Two-photon excitation in time-resolved fluorescence microscopy [2184-08]
P. Hänninen, S. Hell, A. Kuusisto, L. Lehtelä, J. Salo, E. Soini, Univ. of Turku (Finland)

72 Simultaneous lifetime imaging of two fluorophores using a confocal laser microscope [2184-09]
N. R. Åslund, K. Carlsson, Royal Institute of Technology (Sweden)

82 Time-correlated single-photon counting using a confocal scanning laser microscope [2184-10]
H. Brismar, Royal Institute of Technology (Sweden)

93 Real-time confocal microscopy [2184-11]
G. J. Brakenhoff, K. Visscher, Univ. of Amsterdam (Netherlands)
SESSION 3 SURFACE PROFILING AND 3D IMAGE FORMATION THEORY

104 Confocal imaging of thin films [2184-13]
 C. J. Sheppard, T. Connolly, Univ. of Sydney (Australia)

111 Reconstruction of surface profiles using optical differentiation and confocal microscopy [2184-14]
 A. W. Kulawiec, D. T. Moore, Univ. of Rochester

120 Leaky annular pupil for improved lateral resolution in confocal fluorescence microscopy [2184-15]
 C. K. Sieracki, E. W. Hansen, Dartmouth College

127 Three-dimensional images used in the localization of the defects in semiconductor devices [2184-16]
 G. A. Stanciu, C. Miu, S. Stejar, Polytechnical Univ. of Bucharest (Romania)

SESSION 4 MOTION STUDIES AND BIOLOGICAL APPLICATIONS OF 3D MICROSCOPY

138 Spatio-temporal analysis of single-celled organism (protozoa) structures via confocal microscopy [2184-17]
 P. Ramoino, G. Marcenaro, M. Fato, F. Beltrame, Univ. degli Studi di Genova (Italy)

149 Motion estimation and visualization for four-dimensional optical microscopy [2184-18]
 W. F. Marshall, D. A. Agard, J. W. Sedat, Univ. of California/San Francisco

159 Chondrocytes provide a model for in-situ confocal microscopy and 3D reconstructions [2184-19]
 M. S. Hirsch, K. K. H. Svoboda, Boston Univ. School of Medicine

170 Novel real-time scanning slit confocal microscope for in-vivo imaging [2184-20]
 B. R. Masters, Uniformed Services Univ. of the Health Sciences; A. A. Thaer, Institute for Medical Vision Aid and Helmut Hund GmbH (FRG)

SESSION 5 SUPERRESOLUTION, IMAGE PROCESSING AND ANALYSIS

182 Maximum-likelihood reconstruction of 3D confocal data sets [2184-21]
 S. S. Stefanou, E. W. Hansen, Dartmouth College

188 Confocal theta microscopy and 4Pi-confocal theta microscopy [2184-22]
 S. Lindek, E. H. K. Stelzer, European Molecular Biology Lab. (FRG)

195 Application of digital image quality criteria to optimize the confocal microscope setup [2184-23]
 A. Kriete, Univ. Giessen (FRG)

SESSION 6 IMAGE ANALYSIS, 3D RECONSTRUCTION AND VISUALIZATION

208 Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy [2184-35]
Nicer-slicer-dicer: an interactive volume visualization tool [2184-27]
P. J. Moran, Univ. of Illinois/Urbana-Champaign

Three-dimensional analysis of the glomerulus [2184-28]

Three-dimensional neuron tracing from confocal microscope data using a head-coupled display [2184-29]
R. G. Scharein, K. S. Booth, J. J. Little, Univ. of British Columbia (Canada)

Reconstruction of 3D structures and configurations from microscopical partial views [2184-31]
P. Virgili, A. Crovetto, G. Venturi, A. M. Casali, Univ. of Genoa (Italy)

Photogrammetric determination of topography of microstructures by scanning electron microscope [2184-32]
A. Gleichmann, M. Köhler, Institut für Physikalische Hochtechnologie (FRG); M. Hemmleb, J. Albertz, Technische Univ. Berlin (FRG)

Improvements in semiautomated serial section reconstruction and visualization of neural tissue from transmission electron microscope images [2184-36]
K. N. Montgomery, Sterling Software; M. D. Ross, NASA-Ames Biocomputation Ctr.

Addendum

Author Index