CONTENTS

Contributors to Volume 82 xiii
Series Editor's Preface xix
Preface xxix

1. Introduction to the Data Analysis Relevance in the Omic Era 1
 Carmen Bedia, Romà Tauler, and Joaquim Jaumot

 1. Introduction to Omics 1
 2. Data Analysis in the Omic Workflow 2
 3. Data Analysis Aspects Considered in This Volume 6
 4. Future Trends 9
 Acknowledgements 10
 References 10

2. Experimental Approaches in Omic Sciences 13
 Carmen Bedia

 1. Introduction 13
 2. The Importance of the Biological Samples 15
 3. Targeted and Untargeted Analytical Approaches in Omic Studies 16
 4. Sample Preparation in Omics Studies 17
 5. Analytical Technologies in Omic Sciences 19
 6. Concluding Remarks 32
 References 32

3. Introduction to Microarrays Technology and Data Analysis 37
 Ricardo Gonzalo and Alex Sánchez

 1. Microarray History 38
 2. Microarray Technology 39
 3. The Microarray Data Analysis Process 44
 4. Microarray Data Preprocessing 44
 5. Experimental Design for Microarray Experiments 53
 6. Statistical Analysis of Microarray Data 55
 7. Microarray Bioinformatics 62
 8. Discussion and Conclusions 65
 Supplementary Materials 66
 Acknowledgements 66
 References 66
 Further Reading 69
11. ASCA: The Implementation of Design of Experiments Into Multivariate Modelling in Chemometrics 301
Jeroen Jansen and Jasper Engel

1. Introduction 302
2. The Need for ASCA 303
3. ASCA: Hyphenating Data Analysis Methods 307
4. Decomposition of Variation According to Design of Experiments 308
5. Mathematical Background of ANOVA Simultaneous Component Analysis 312
6. Related Statistical Methods 317
7. Application of ASCA on a Chemical Ecology Dataset 324
8. Conclusions and Discussion 332
9. Software Availability 333
References 333

12. Compression and Resolution Tools for the Analysis of Untargeted Metabolomic Data 337
Eva Gorrochategui, Joaquim Jaumot, and Romà Tauler

1. Introduction 337
2. Tools for the Analysis of Metabolomic and Lipidomic Data 338
3. Conversion and Import of LC–MS Data 339
4. LC–MS Metabolomic/Lipidomic Data Structures 341
5. LC–MS Preprocessing: Data Compression 342
6. Chemometric Tools for Omic Studies (Chemomics) 350
7. ROIMCR Procedure: Chemometric Profiling by MCR-ALS of ROI Data 352
8. Validation of ROIMCR Procedure for Quantitative Process 360
9. Feature Selection, Biomarker Discovery and Biochemical Interpretation 363
10. Conclusions 364
References 365

13. Analysis and Interpretation of Mass Spectrometry Imaging Datasets 369
Markus de Raad, Trent R. Northen, and Benjamin P. Bowen

1. Introduction and Background 369
2. Commonly Used MSI Software 371
3. Data Types 371
4. Data Analysis 374
5. Future Directions 382
Acknowledgements 383
References 383
14. An Overview of Metabolomics Data Analysis: Current Tools and Future Perspectives
Santosh Lamichhane, Partho Sen, Alex M. Dickens, Tuulia Hyötyläinen, and Matej Orešič

1. Metabolomics: An Overview 387
2. Metabolomics Data Analysis 388
3. Metabolite Set Analysis and Pathway Overrepresentations 401
4. Mathematical Modelling of Metabolism 403
5. Conclusions 406
Acknowledgement 407
References 407

15. Metabolite Annotation and Identification
Joanna Godzien, Alberto Gil de la Fuente, Abraham Otero, and Coral Barbas

1. Introduction 415
2. Ion Annotation 419
3. Spectral Information—Tandem Mass Spectrometry—MS/MS 426
4. Chromatographic and Electrophoretic Information 434
5. Nonanalytical Information 438
6. Summary 440
References 441

16. Multiomic Data Integration and Analysis via Model-Driven Approaches
Igor Marín de Mas

1. Introduction 447
2. Model-Driven Methods to Study Metabolism 451
3. Transcriptomic and Proteomic Data Integration 457
4. Metabolomic Data Integration 464
5. Multiomic Data Integration Approaches 468
6. Future Challenges 470
References 471

17. Integration of Metabolomic Data From Multiple Analytical Platforms: Towards Extensive Coverage of the Metabolome
Julien Boccard and Serge Rudaz

1. Introduction 477
2. Analytics 478
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Chemometrics</td>
<td>484</td>
</tr>
<tr>
<td>4. Bioinformatics</td>
<td>495</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>497</td>
</tr>
<tr>
<td>References</td>
<td>498</td>
</tr>
</tbody>
</table>

18. Multiomics Data Integration in Time Series Experiments 505

Sonia Tarazona, Leandro Balzano-Nogueira, and Ana Conesa

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>505</td>
</tr>
<tr>
<td>2. Unsupervised Methods</td>
<td>509</td>
</tr>
<tr>
<td>3. Supervised Methods</td>
<td>514</td>
</tr>
<tr>
<td>4. Multiomics Visualization</td>
<td>522</td>
</tr>
<tr>
<td>5. Final Remarks</td>
<td>527</td>
</tr>
<tr>
<td>References</td>
<td>528</td>
</tr>
</tbody>
</table>

19. Applications of Metabolomics Analysis in Environmental Research 533

Carmen Bedia, Paulo Cardoso, Núria Dalmau, Elba Garreta-Lara, Cristian Gómez-Canela, Eva Gorrochategui, Meritxell Navarro-Reig, Elena Ortiz-Villanueva, Francesc Puig-Castellví, and Romà Tauler

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>533</td>
</tr>
<tr>
<td>2. Metabolomics in Environmental Microbiology</td>
<td>536</td>
</tr>
<tr>
<td>3. Metabolomics of Microbial VOCs</td>
<td>543</td>
</tr>
<tr>
<td>4. Metabolomics in Plant Environmental Research</td>
<td>545</td>
</tr>
<tr>
<td>5. Environmental Metabolomics in Aquatic Organisms</td>
<td>555</td>
</tr>
<tr>
<td>6. Metabolomics in Environmental Human Health</td>
<td>558</td>
</tr>
<tr>
<td>7. Conclusions and Future Perspectives</td>
<td>568</td>
</tr>
<tr>
<td>References</td>
<td>569</td>
</tr>
</tbody>
</table>

20. Functional Data Analysis: Omics for Environmental Risk Assessment 583

Benjamin Piña, Demetrio Raldúa, Carlos Barata, José Portugal, Laia Navarro-Martín, Rubén Martínez, Inmaculada Fuertes, and Marta Casado

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction—The Omic Perspective</td>
<td>583</td>
</tr>
<tr>
<td>2. Omics and Data Analysis</td>
<td>589</td>
</tr>
<tr>
<td>3. Functional Analysis</td>
<td>593</td>
</tr>
<tr>
<td>4. Data Fusion</td>
<td>596</td>
</tr>
<tr>
<td>5. The AOP Concept</td>
<td>598</td>
</tr>
</tbody>
</table>
6. Omics for Deciphering Mechanisms of Action of Toxicants Inducing Complex Phenotypes 600
7. Concluding Remarks: The Need for a Synthetic Approach 606
Acknowledgements 606
References 607

21. Data Analysis in Transcriptomics and Metabolomics Clinical Applications 613
Hector Gallart-Ayala, José Fernández-Navarro, and Antonio Checa
1. Introduction 613
2. Transcriptomics Applications in the Clinical and Biochemical Field 616
3. Metabolomics Applications in the Clinical and Biochemical Field 623
4. Transcriptomics and Metabolomics Data Integration 630
5. Conclusions and Future Perspectives 634
References 636

22. Foodomics Applications 643
Carlos León, Alejandro Cifuentes, and Alberto Valdés
1. Introduction to Foodomics: Definition and Principles 643
2. Data Analysis in Food Strategies 645
3. Integration of Omics Data in Foodomics Strategies 668
4. Conclusions and Future Outlooks 672
References 673

Index 687