Derive a Formula

Volume 1: Basic Analytical Skills and Methods for Physical Scientists

Contents

Pr	reface		ix
At	out th	ne Authors	xvii
$A \epsilon$	knowi	ledgements	xxi
In	troduc	tion	xxiii
		From Base Camp—Understanding ons and Variables: The First Stage	1
1.	Esse	ential Functions	3
	1.1	Polynomial and Rational Functions	3
	1.2	Transcendental Functions	16
	1.3	Inverse Functions and Branches	22
	1.4	Key Points	29
2.	Poly	nomial Expansions: When They Work	
	and	When They Don't	31
	2.1	Maclaurin Expansions	31
	2.2	Taylor Expansions	
	2.3	When Maclaurin and Taylor Expansions	
		Don't Work	46
	2.4	Life Without a Calculator	

xxxii Contents

	2.5	Key Points				
3.	Limits, Differentiation and Integration					
	3.1	Limits				
	3.2	Differentiation				
	3.3	Integration				
	3.4	Key Points				
4.	The	The Way to Check Yourself: Analysis of Limiting Cases 8				
	4.1	Key Points				
5.	Definite Integrals as Functions 9.					
	5.1	Warm Up				
	5.2	Integrals as Functions of a Variable				
		in the Integrand				
	5.3	Integrals as Functions of the				
		Limit of Integration				
	5.4	Key Points				
6.	Prob	Probability Distribution Functions, and Filter				
	Func	ctions as Limiting Cases 105				
	6.1	Probability and the Binomial Distribution 106				
	6.2	An Introduction to Continuous Distribution				
		Functions				
	6.3	Expectation Values and Standard Deviation 116				
	6.4	Classic Examples of the Distribution Function 120				
	6.5	Conditional Probability as the Convolution				
		of Two Distribution Functions				
	6.6	Defining the Dirac Delta Function and Heaviside				
		Step Function as Limits				
	6.7	Key Points				

xxxiii

	7.	Vecto	ors and Introduction to Vector Calculus	135
		7.1 7.2 7.3	Vector Basics	143
		7.3 7.4	Elementary Vector Calculus	
	8.	Unde	erstanding Sequences and Series	173
		8.1	Basic Notions	173
		8.2	Calculating Exactly and Estimating the Sums of Series	177
		8.3	The Integral Test and Conditionally	1.,
			Converging Series	186
		8.4	Examples of Sums in Physics	191
		8.5	Key Points	199
	9.	Comp	plex Numbers	201
		9.1	What is a Complex Number?	201
		9.2	Exponential Functions with Imaginary and Complex	005
		9.3	Arguments	
		$9.3 \\ 9.4$	Key Points	
		J.4	Rey Tomos	214
	10.	Dim	ensionality and Scaling	217
		10.1	From Pythagoras to Einstein	218
		10.2	Simpler than how Niels Bohr did it	220
		10.3	The Bjerrum Length	224
		10.4	The Debye Length	226
		10.5	Dimensionless Constants	228
		10.6	Non-Universal Dimensionless Constants and their Usefulness	220
		10.7	Examples of Order of Magnitude Estimates	200
•			and Deriving Relationships Based on Dimensional	
			Analysis	236

xxxiv Contents

	10.8	Back to Great Constants of Universe and		
		Mathematics	. 245	
	10.9	Key Points	. 248	
Co	ncludi	ng Remarks	251	
Pr	oblems		253	
		From Camp 1: Deeper Understanding tions and Solving Equations	271	
1.	Intro	duction to Functions of Two and More Variables	273	
	1.1	Plotting Functions of Two Variables, Their		
		Derivatives and Turning Points	. 273	
	1.2	Changing Variables in the Generalized		
		Chain Rule	. 280	
	1.3	Small Changes	. 285	
	1.4	Line Integrals along Paths	. 289	
	1.5	Path Functions, State Functions,		
		and Thermodynamics	. 294	
	1.6	Surface and Volume Integration: A Quick		
		Preview	. 304	
	1.7	Key Points	. 311	
2.	Fourier Series and Integrals 33			
	2.1	Fourier Cosine Series	. 313	
	2.2	Fourier Sine Series	. 321	
	2.3	Mixed and Complex Fourier Series	. 329	
	2.4	Fourier Transforms	. 335	
	2.5	Multidimensional Fourier Series and Fourier		
		Transforms	. 346	
	2.6	Key Points	. 358	

Contents xxxv

3.	Linear Equations and Determinants			
	3.1	Introduction to Linear Equations: Spectroscopy and Application to the Beer–Lambert Law	361	
	3.2	Introducing Determinants and Cramer's Rule for the		
		Solution of Inhomogeneous Linear Equations		
	3.3	Homogeneous Linear Equations	382	
	3.4	Eigenvalue Equations: An Introduction Considering	000	
	2 -	the H_2^+ Ion as an Example		
	3.5	Key Points	395	
4.	Matrices and Symmetry			
	4.1	Matrices and Matrix-Algebra	397	
	4.2	Linear Equations Using Matrices and Their		
		Diagonalization	411	
	4.3	Matrices and Discrete Symmetry	431	
	4.4	Matrix Coordinate Transformations		
		and Coordinate Systems	441	
	4.5	Key Points	460	
5.	Solving Nonlinear Equations, Algebraic and			
	Tran	scendental	463	
	5.1	Some Examples of the Solution of Nonlinear		
		Algebraic and Transcendental Equations	464	
	5.2	Solving Equations through Newton's Method		
	5.3	Lagrange Inversion	490	
	5.4	Coupled Nonlinear Equations		
	5.5	Key Points	503	
6.	Introduction to Ordinary Differential Equations 5			
	6.1	First-Order Differential Equations	507	
	6.2	Second-Order Linear Differential Equations	•••	
		with Constant Coefficients	540	

xxxvi Contents

	6.3	Reduction of Order	562
	6.4	Key Points	579
7.	Furt	her Methods for Evaluating Integrals and the	
		nma Function	583
	7.1	Methods for the Exact Evaluation of Integrals	583
	7.2	Further Methods for the Approximation and Asymptotic Expansion of Integrals	588
	7.3	The Euler Gamma Function	610
	7.4	Key Points	615
8.	Functions of a Complex Variable 61		
	8.1	Rudiments of Complex-Variable Functions	618
	8.2	Branch Cuts	630
	8.3	Key Points	638
Co	ncludi	ing Remarks	641
Pr	oblems	s	645
Ins	structi	ions to Access the Outlines of Solutions	665