Table of contents

About the authors
Preface
List of tables
List of figures

1 Sampling, transport and storage of samples for analysis
Revision history
1.1 Introduction
1.1.1 Lot
1.1.2 Lot sample and sample unit
1.1.3 Lot sampling plans
1.1.4 Analytical unit
1.2 Collecting samples for analysis
1.2.1 Selection and preparation of containers for the sampling of foods contained in non-individual packages
1.2.2 Procedures for the sampling of foods contained in non-individual packages
1.2.3 Sampling of foods involved in foodborne diseases
1.2.4 Sampling of water
1.3 Transportation and storage of samples until analysis
1.3.1 Foods with low water activity
1.3.2 Frozen foods
1.3.3 Refrigerated foods
1.3.4 Commercially sterile foods in sealed packages
1.3.5 Water samples
1.4 References

2 Preparation of samples for analysis
Revision history
2.1 Introduction
2.2 Homogenization of samples and withdrawal of the analytical unit
2.2.1 Procedure for homogenization and withdrawal of analytical units from liquid products
2.2.2 Procedure for homogenization and withdrawal of analytical units from solid or concentrated liquid products
2.2.3 Procedure for withdrawing the analytical unit using the surface swabbing technique
2.2.3.1 Swab sampling
2.2.3.2 Sponge swab sampling
2.2.4 Procedure for withdrawing the analytical unit using the surface washing technique
2.2.4.1 Procedure for washing poultry carcasses
2.2.4.2 Procedure for washing other foods
2.2.4.3 Procedure for washing packages
2.2.5 Keeping of counter-samples
2.3 Preparation of the first dilution of the analytical unit
2.3.1 Diluents for presence/absence tests
2.3.2 Diluents for tests requiring differentiated handling of the sample
2.3.3 Diluents for general quantification tests
2.3.4 How to prepare an initial 1:10 (10^1) dilution
2.3.5 How to prepare an initial dilution different from 1:10
2.3.6 Procedure for the preparation of the first dilution of liquid samples
2.3.7 Procedure for the preparation of the first dilution of solid or concentrated liquid samples
2.3.8 Procedure for the preparation of the first dilution of samples obtained by surface swabbing or surface washing

2.4 Serial decimal dilution of the sample
2.5 References

Annex 2.1 – Procedures for homogenizing the content and withdrawal of the analytical unit of different types of foods
a) Powdered products
b) Pasty or ground products
c) Yogurts with fruit pieces
d) Cheeses
e) Very hard food products
f) Pieces of solid foods
g) Eggs in the shell
h) Meat cuts for analysis of non-surface contamination
i) Bivalves
j) Gastropods
k) Whole and sliced cephalopods
l) Whole crustaceans such as crabs
m) Sea urchins
n) Whole fresh fish

Annex 2.2 – Special cases in which there are variations in the analytical unit and/or dilution and/or diluents recommended for the preparation of the first dilution of samples of different types of foods
a) Liquids with low levels of contamination
b) Fatty foods
c) Lump-forming powders
d) Thickeners or products containing natural antimicrobial compounds
e) Gelatin
f) Acid products
g) Fine flours or meals, cereal grains, animal feed
h) Cocoa and chocolate
i) Egg white
j) Fermented products containing live microorganisms intended for the quantification of the contaminating microflora (except probiotics)
k) Powdered dairy products (dried milk, dried sweet whey, dried acid whey, dried buttermilk, lactose)
l) Butter
m) Frozen dairy products and ice cream
n) Cheeses
o) Fermented dairy products
p) Casein and caseinates
q) Rennet casein difficult to dissolve
3 Basic plate count techniques for enumeration of microorganisms 25
3.1 Introduction 25
3.2 Pour plate technique 26
3.2.1 Material required for the analyses 26
3.2.2 Procedure 26
3.3 Spread plate technique 27
3.3.1 Material required for the analyses 28
3.3.2 Procedure 28
3.4 Drop plate technique 29
3.4.1 Material required for the analyses 29
3.4.2 Procedure 29
3.5 Membrane filtration 30
3.5.1 Material required for the analyses 30
3.5.2 Procedure 30
3.6 Counting colonies and calculating results according to APHA 31
3.6.1 Pour plate calculations 31
3.6.1.1 Rules for calculating the pour plate results in the standard situation 32
3.6.1.2 Rules for calculating the pour plate results in unusual situations 33
3.6.1.3 Calculating the pour plates results for samples prepared by the surface swabbing technique (swabs or sponges) 35
3.6.1.4 Calculating the pour plate results of samples prepared by the surface washing technique 36
3.6.2 Spread plate calculations 36
3.6.3 Drop plate calculations 36
3.6.4 Membrane filtration calculations 36
3.7 (revised) Counting colonies and calculating results according to ISO 7218:2007/Amd.1:2013 37
3.7.1 (new) General requirements for the calculation of results 37
a) Number of Petri dishes per dilution 37
b) Maximum and minimum acceptable number of colonies on counting plates 37
c) Decimal dilution of the number of colonies 38
d) Acceptable variation between counts of the pair of plates of a duplicate 38
e) Presentation of the result 38
3.7.2 General rules for the calculation of results 38
3.7.3 Rules for calculation in unusual situations 41
3.8 References 43
Annex 3.1 – (new) Limits of agreement for sums of colony counts of two parallel Petri dishes or colony counts from one Petri dish per dilution step over two 10-fold dilution steps (with a probability of 99% per comparison) (ISO 14461-2:2005) 44
Annex 3.2 – (new) Limits of agreement for colony counts of two parallel Petri dishes (with a probability of 99% per comparison) (ISO 14461-2:2005) 45
4 Basic techniques for microbial enumeration by the most probable number (MPN) method 47
4.1 Introduction 47
4.2 Multiple dilution test
- **4.2.1 Material required for the analyses**
- **4.2.2 Procedure**

4.3 Single dilution test
- **4.3.1 Material required for the analyses**
- **4.3.2 Procedure**

4.4 Calculation of the results
- **4.4.1 Calculating the results of the multiple dilution test**
 - **4.4.1.1 Calculation using the MPN tables (for decimal dilutions)**
 - **4.4.1.2 Calculating using the Thomas formula (for non-decimal dilutions)**
 - **4.4.1.3 Calculating the results of the samples prepared by the surface swabbing or surface washing techniques**
- **4.4.2 Calculating the results of the single dilution test**
 - **4.4.2.1 Rules for calculations performed using Table MPN-3**
 - **4.4.2.2 Calculation for samples prepared by the surface swabbing or surface washing techniques**

4.5 References

Annex 4.1 – MPN tables

5 Basic techniques for the detection of the presence/absence of microorganisms

5.1 Introduction
- **5.1.1 Enrichment**
 - **5.1.1.1 Pre-enrichment**
 - **5.1.1.2 Selective enrichment**
- **5.1.2 Isolation in solid media (selective differential plating)**
- **5.1.3 Confirmation**
 - **5.1.3.1 Catalase test**
 - **5.1.3.2 Citrate test**
 - **5.1.3.3 Amino acid decarboxylation tests**
 - **5.1.3.4 Phenylalanine deaminase test**
 - **5.1.3.5 Carbohydrate fermentation tests**
 - **5.1.3.6 Indole test**
 - **5.1.3.7 Malonate test**
 - **5.1.3.8 Oxidation/fermentation (O/F) test**
 - **5.1.3.9 Oxidase test**
 - **5.1.3.10 Nitrate reduction test**
 - **5.1.3.11 Urease test**
 - **5.1.3.12 Methyl red (MR) test**
 - **5.1.3.13 Voges-Proskauer (VP) test**

5.2 Material required for the analyses

5.3 Procedure
- **5.3.1 Pre-enrichment**
- **5.3.2 Selective enrichment**
- **5.3.3 Differential plating**
 - **5.3.3.1 Streak plating technique for obtaining pure cultures**
- **5.3.4 Selection of colonies and subculturing of cultures for confirmation**
 - **5.3.4.1 Technique for the subculturing of pure cultures starting from colonies isolated from plates**
5.3.5 Confirmation tests
5.3.5.1 Gram staining (Hucker's method) 63
5.3.5.2 (new) KOH test for confirmation of doubtful Gram staining (Gregersen, 1978) 64
5.3.5.3 Spore staining (Schaeffer-Fulton's method) 64
5.3.5.4 Spore staining (Ashby's method) 64
5.3.5.5 Wet mounts for direct (fresh) microscopic observation 64

5.4 References 64

6 Aerobic plate count

6.1 Introduction
6.1.1 The importance and significance of the total aerobic mesophilic count 65
6.1.2 Definition of psychrotrophs 66
6.1.3 Comments on methods of analysis 67

6.2 (revised) Plate count method APHA 8:2015 for aerobic mesophilic bacteria in foods and water
6.2.1 Material required for analysis 69
6.2.2 Procedure 70
6.2.2.1 Pour plate technique 70
6.2.2.2 Spread plate technique 71
6.2.2.3 Membrane filtration technique 71

6.3 (revised) Petrifilm™ AOAC official methods for aerobic mesophilic bacteria in foods 73
6.3.1 Material required for analysis 73
6.3.2 Procedure 73

6.4 (revised) Plate count method APHA 13.61:2015 for aerobic psychrotrophic bacteria in foods
6.4.1 Material required for analysis 74
6.4.2 Procedure 74

6.5.1 Material required for analysis 75
6.5.2 Procedure 75

6.6 (new) Plate count method BAM/FDA:2001 for aerobic mesophilic bacteria in foods 77
6.6.1 Material required for analysis 77
6.6.2 Procedure 77

6.7 References 79

7 Yeasts and molds

7.1 Introduction
7.1.1 Yeasts and molds in foods 81
7.1.2 Comments on methods of analysis for total yeast and mold counts 82
7.1.3 Psychrotrophic fungi 82
7.1.4 Heat-resistant molds 84
7.1.5 Preservative-resistant yeasts (PRY)
7.1.5.1 Zigosaccharomyces bailii 85
7.1.5.2 Zygossaccharomyces bisporus 85
7.1.5.3 Schizosaccharomyces pombe 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.5.4</td>
<td>Candida krusei</td>
<td>85</td>
</tr>
<tr>
<td>7.1.5.5</td>
<td>Pichia membranaefaciens</td>
<td>86</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Osmophilic yeasts</td>
<td>86</td>
</tr>
<tr>
<td>7.1.6.1</td>
<td>Zygosaccharomyces rouxii</td>
<td>86</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Direct plating method ICFM for particulate foods</td>
<td>87</td>
</tr>
<tr>
<td>7.2.A</td>
<td>Plate count method APHA 21:2015 for yeasts and molds in foods</td>
<td>87</td>
</tr>
<tr>
<td>7.2.A.1</td>
<td>Material required for analysis</td>
<td>87</td>
</tr>
<tr>
<td>7.2.A.2</td>
<td>Procedure</td>
<td>87</td>
</tr>
<tr>
<td>7.2.B.1</td>
<td>Material required for analysis</td>
<td>90</td>
</tr>
<tr>
<td>7.2.B.2</td>
<td>Procedure</td>
<td>90</td>
</tr>
<tr>
<td>7.2.C</td>
<td>(new) Plate count method BAM/FDA:2001 for yeasts and molds in foods</td>
<td>92</td>
</tr>
<tr>
<td>7.2.C.1</td>
<td>Material required for analysis</td>
<td>92</td>
</tr>
<tr>
<td>7.2.C.2</td>
<td>Procedure</td>
<td>92</td>
</tr>
<tr>
<td>7.3</td>
<td>(revised) Plate count method APHA 13:2015 for psychrotrophic fungi in foods</td>
<td>93</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Material required for analysis</td>
<td>93</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Procedure</td>
<td>93</td>
</tr>
<tr>
<td>7.4</td>
<td>(revised) Plate count method APHA 22.4:2015 for heat-resistant molds in foods</td>
<td>95</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Material required for analysis</td>
<td>95</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Procedure</td>
<td>95</td>
</tr>
<tr>
<td>7.5</td>
<td>Pitt and Hocking (2009) methods for preservative-resistant yeasts in foods</td>
<td>97</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Material required for analysis</td>
<td>97</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Procedure</td>
<td>97</td>
</tr>
<tr>
<td>7.5.2.1</td>
<td>Presence/absence method</td>
<td>98</td>
</tr>
<tr>
<td>7.5.2.2</td>
<td>Direct plate count method</td>
<td>99</td>
</tr>
<tr>
<td>7.6</td>
<td>(revised) Membrane filtration or plate count methods APHA 17.3:2015 for osmophilic yeasts in foods</td>
<td>99</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Material required for analysis</td>
<td>99</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Procedure</td>
<td>99</td>
</tr>
<tr>
<td>7.6.2.1</td>
<td>Membrane filtration method</td>
<td>99</td>
</tr>
<tr>
<td>7.6.2.2</td>
<td>Plate count method</td>
<td>100</td>
</tr>
<tr>
<td>7.7</td>
<td>(new) Direct plating method Hocking et al. (2006) for percentage of fungal infection in particulate foods</td>
<td>100</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Material required for analysis</td>
<td>101</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Procedure</td>
<td>101</td>
</tr>
<tr>
<td>7.8</td>
<td>References</td>
<td>101</td>
</tr>
</tbody>
</table>

8 Enterobacteriaceae

Revision history

8.1 Introduction

8.1.1 Taxonomy | 103
8.1.2 Comments on methods of analysis | 104

8.2 (revised) Plate count method APHA 9.62:2015 for Enterobacteriaceae in foods | 105
8.2.1 Material required for analysis | 105
8.2.2 Procedure | 105

8.3 (revised) Presence/absence (P/A) or most probable number (MPN) method APHA 9.61:2015 for Enterobacteriaceae in foods | 106
8.3.1 Material required for analysis | 106
8.3.2 Procedure | 106
8.4 (revised) AOAC official method 2003.1 (Petrifilm™) for Enterobacteriaceae in selected foods 108
8.4.1 Material required for analysis 108
8.4.2 Procedure 108
8.5 (new) Plate count method ISO 21528-2:2017 for Enterobacteriaceae in foods 109
8.5.1 Material required for analysis 109
8.5.2 Procedure 109
8.6 (new) Presence/absence (P/A) or most probable number (MPN) method ISO 21528-1:2017 for Enterobacteriaceae in foods 111
8.6.1 Material required for analysis 111
8.6.2 Procedure 111
8.7 References 113

9 Total and thermotolerant coliforms and Escherichia coli 115
Revision history 115
9.1 Introduction 115
9.1.1 Definition of total coliforms 115
9.1.2 Definition of thermotolerant coliforms 116
9.1.3 E. coli 116
9.1.4 Use as indicators 116
9.1.5 Comments on methods of analysis 117
9.2 (revised) Most probable number (MPN) method APHA 9:2015 for total/thermotolerant coliforms and E. coli in foods 119
9.2.1 Material required for analysis 119
9.2.2 Procedure 120
9.3 Most probable number (MPN) methods ISO 4831:2006 and ISO 7251:2005 for total coliforms and presumptive E. coli in foods 123
9.3.1 Material required for analysis 123
9.3.2 Procedure 123
9.4 (revised) Most probable number (MPN) method APHA/AWWA/WEF:2012 for total and thermotolerant coliforms and E. coli in water 126
9.4.1 Material required for analysis 126
9.4.2 Procedure 126
9.5 (new) Most probable number (MPN) method BAM/FDA:2017 for total/thermotolerant coliforms and E. coli in foods 128
9.5.1 Material required for analysis 128
9.5.2 Procedure 129
9.6 (revised) Plate count method APHA:2015 for total coliforms in foods 130
9.6.1 Material required for analysis 130
9.6.2 Procedure 130
9.7 (new) Membrane filtration method ISO 9308-1:2014/Amd.1:2016 for total coliforms and E. coli in water 132
9.7.1 Material required for analysis 132
9.7.2 Procedure 132
9.8 References 134

10 Staphylococcus aureus 135
Revision history 135
10.1 Introduction 135
10.1.1 Taxonomy 135
10.1.1.1 The genus Staphylococcus 135
XII Table of contents

10.1.1.2 The coagulase-positive staphylococci 136
10.1.1.3 Staphylococcus aureus 137
10.1.2 Epidemiology 137
10.1.2.1 Staphylococcus aureus enterotoxins 137
10.1.2.2 Staphylococcal food poisoning 138
10.1.3 Comments on methods of analysis 139

10.2 (revised) Plate count method APHA 39.63:2015 for coagulase-positive staphylococci
and Staphylococcus aureus in foods 140
10.2.1 Material required for analysis 140
10.2.2 Procedure 140

10.3 (revised) Most probable number (MPN) method APHA 39.62:2015 for coagulase-positive
staphylococci and Staphylococcus aureus in foods 143
10.3.1 Material required for analysis 143
10.3.2 Procedure 143

and Staphylococcus aureus in foods 145
10.4.1 Material required for analysis 145
10.4.2 Procedure 145

10.5 References 147

11 Bacillus cereus 149
Revision history 149
11.1 Introduction 149
11.1.1 Taxonomy 149
11.1.1.1 Bacillus cereus group 149
Bacillus anthracis 150
Bacillus thuringiensis 150
Bacillus mycoides 150
Bacillus pseudomycoïdes 151
Bacillus weihenstephanensis 151
Bacillus cytotoxicus 151
New species 151
11.1.1.2 Bacillus cereus 151
11.1.2 Epidemiology 152
11.1.3 Comments on methods of analysis 152
11.2 (revised) Plate count method APHA 31.61:2015 for Bacillus cereus in foods 153
11.2.1 Material required for analysis 153
11.2.2 Procedure 154
11.3 (revised) Most probable number (MPN) method APHA 31.62:2015 for Bacillus cereus in foods 157
11.3.1 Material required for analysis 157
11.3.2 Procedure 157
11.4 References 159

12 Clostridium perfringens 161
Revision history 161
12.1 Introduction 161
12.1.1 Taxonomy 161
12.1.2 Epidemiology 162
12.1.2.1 Clostridium perfringens type A food poisoning 162
12.1.2.2 Clostridium perfringens type C necrotic enteritis 163
12.1.3 Comments on methods of analysis 163
12.2 (revised) Plate count method APHA 33.72:2015 for *Clostridium perfringens* in foods 164
12.2.1 Material required for analysis 164
12.2.2 Procedure 165
12.3 (revised) Presence/absence method APHA 33.71:2015 for *Clostridium perfringens* in foods 167
12.3.1 Material required for analysis 167
12.3.2 Procedure 167
12.4 (new) Plate count method BAM/FDA:2001 for *Clostridium perfringens* in foods 169
12.4.1 Material required for analysis 169
12.4.2 Procedure 169
12.5 (new) Plate count method ISO 7937:2004 for *Clostridium perfringens* in foods 171
12.5.1 Material required for analysis 171
12.5.2 Procedure 172
12.6 (new) Membrane filtration method ISO 14189:2013 for *Clostridium perfringens* in water 173
12.6.1 Material required for analysis 173
12.6.2 Procedure 173
12.7 References 175

13 **Enterococci** 177

Revision history 177
13.1 Introduction 177
13.1.1 Taxonomy 177
13.1.1.1 Enterococci 178
 Description of the genus *Enterococcus* 178
13.1.1.2 Fecal streptococci 179
 Description of the genus *Streptococcus* 180
13.1.1.3 Differentiation of enterococci from group bovis fecal streptococci 180
13.1.2 Comments on methods of analysis 180
13.2 (revised) Plate count method APHA 10.5:2015 for enterococci and fecal streptococci in foods 181
13.2.1 Material required for analysis 181
13.2.2 Procedure 182
13.3 (revised) Most probable number (MPN) method APHA 10.2:2015 for enterococci and fecal streptococci in foods 183
13.3.1 Material required for analysis 183
13.3.2 Procedure 183
13.4 (revised) Membrane filtration method APHA/AWWA/WEF 9230C.3c:2012 for enterococci and fecal streptococci in water 184
13.4.1 Material required for analysis 184
13.4.2 Procedure 184
13.5 Membrane filtration method ISO 7899-2:2000 for intestinal enterococci in water 186
13.5.1 Material required for analysis 186
13.5.2 Procedure 186
13.6 References 186

14 **Lactic acid bacteria** 189

Revision history 189
14.1 Introduction 189
14.1.1 Carnobacterium 189
14.1.2 Enterococcus 191
14.1.3 Fructobacillus 191
14.1.4 Lactobacillus 192
14.1.5 Lactococcus 192
14.1.6 Leuconostoc 193
14.1.7 Oenococcus 193
14.1.8 Pediococcus 194
14.1.9 Streptococcus 194
14.1.10 Tetragenococcus 195
14.1.11 Weissella 195
14.1.12 Comments on methods of analysis 195

14.2 (revised) Plate count method APHA 19.52:2015 for lactic acid bacteria in foods 198
14.2.1 Material required for analysis 198
14.2.2 Procedure 198

14.3.1 Material required for analysis 200
14.3.2 Procedure using MRS broth 200
14.3.3 Procedure using Rogosa SL broth 202

14.4.1 Material required for analysis 202
14.4.2 Procedure 202

14.5 References 205

15 Campylobacter 207
Revision history 207
15.1 Introduction 207
15.1.1 Taxonomy 207
15.1.1.1 Campylobacter 207
15.1.1.2 Thermotolerant Campylobacter 209
15.1.2 Epidemiology 209
15.2 (revised) Presence/absence method ISO 10272-1:2017 for thermotolerant Campylobacter in foods 210
15.2.1 Material required for analysis 210
15.2.2 Procedure 210
15.3 (new) Plate count method ISO 10272-2:2017 for thermotolerant Campylobacter in foods 213
15.3.1 Material required for analysis 214
15.3.2 Procedure 214

15.4 References 216

16 Cronobacter 217
Revision history 217
16.1 Introduction 217
16.1.1 Taxonomy 217
16.1.2 Epidemiology 218
16.1.3 Codex Alimentarius microbiological criteria for Cronobacter spp. in powdered infant formulae 219
16.1.4 Comments on methods of analysis 220
16.2.1 Material required for analysis 220
16.2.2 Procedure 221
16.3 (new) Presence/absence method BAM/FDA:2012 for *Cronobacter* in dehydrated powdered infant formula
16.3.1 Material required for analysis
16.3.2 Procedure
16.4 References

17 **Pseudomonas**
Revision history
17.1 Introduction
 17.1.1 Taxonomy
 17.1.1.1 *Pseudomonas*
 17.1.1.2 *Shewanella* (synonym *Pseudomonas putrefaciens*)
 17.1.1.3 *Janthinobacterium* (synonym *Pseudomonas mephitica*)
 17.1.1.4 *Stenotrophomonas* (synonym *Pseudomonas maltophilia*)
17.2 (revised) MPN method APHA/AWWA/WEF 9213:2012 for *Pseudomonas aeruginosa* in water
 17.2.1 Material required for analysis
 17.2.2 Procedure
17.3 Membrane filtration method ISO 16266:2006 for *Pseudomonas aeruginosa* in water
 17.3.1 Material required for analysis
 17.3.2 Procedure
17.4 Plate count method ISO 13720:2010 for presumptive *Pseudomonas* spp. in meat and meat products
 17.4.1 Material required for analysis
 17.4.2 Procedure
17.5 Plate count method ISO 11059:2009 for *Pseudomonas* spp. in milk and milk products
 17.5.1 Material required for analysis
 17.5.2 Procedure
17.6 References

18 **Listeria monocytogenes**
Revision history
18.1 Introduction
 18.1.1 Taxonomy
 18.1.2 Epidemiology
 18.1.3 Comments on methods of analysis
18.2 (revised) Presence/absence or MPN method BAM/FDA:2017 for *Listeria monocytogenes* in foods
 18.2.1 Material required for analysis
 18.2.2 Procedure
 18.2.2.1 Presence/absence test and MPN count
 18.2.2.2 Direct plate count
18.3 (revised) Presence/absence method USDA/MLG:2017 for *Listeria monocytogenes* in foods
 18.3.1 Material required for analysis
 18.3.2 Procedure
XVI Table of contents

18.4 (revised) Plate count method ISO 11290-2:2017 for *Listeria* spp. and *Listeria monocytogenes* in foods 257
 18.4.1 Material required for analysis 257
 18.4.2 Procedure 257

 18.5.1 Material required for analysis 260
 18.5.2 Procedure 260

18.6 References 262

19 *Salmonella* 265
 Revision history 265
 19.1 Introduction 266
 19.1.1 Taxonomic classification of *Salmonella* 266
 19.1.2 Serological classification of *Salmonella* 268
 Somatic ("O") antigens 268
 Capsular (surface or envelope) antigens 268
 Flagellar ("H") antigens 269
 The White-Kauffmann-Le Minor system 269
 Salmonella serovar nomenclature 269
 Serovars most commonly found 269
 19.1.3 Biochemical characteristics of *Salmonella* 270
 19.1.4 Epidemiology 270
 19.1.5 Comments on traditional methods used for the examination of *Salmonella* 272
 19.1.6 Comments on alternative methods for the analysis of *Salmonella* 274
 19.1.7 Composite samples for analysis 274
 19.2.1 Material required for analysis 277
 19.2.2 Procedure 277
 19.3 (revised) Presence/absence method BAM/FDA:2018 for *Salmonella* in foods 282
 19.3.1 Material required for analysis 282
 19.3.2 Procedure 282
 19.4.1 Material required for analysis 292
 19.4.2 Procedure 292
 19.5 References 296

20 *Vibrio cholerae* and *Vibrio parahaemolyticus* 299
 Revision history 299
 20.1 Introduction 300
 20.1.1 Taxonomy 300
 20.1.2 Epidemiology 305
 20.1.2.1 *V. cholerae* 305
 20.1.2.2 *V. parahaemolyticus* 305
 20.1.2.3 *V. vulnificus* 305
 20.1.3 Comments on methods of analysis 306
 20.2.A.1 Material required for analysis 307
 20.2.A.2 Procedure 307
20.2.B (revised) Presence/absence and MPN methods APHA 40.61:2015 for *Vibrio cholerae* in foods and water

20.2.B.1 Material required for analysis
20.2.B.2 Procedure

20.3.A MPN method BAM/FDA:2004 for *Vibrio parahaemolyticus* in foods

20.3.A.1 Material required for analysis
20.3.A.2 Procedure

20.3.B (revised) Presence/absence or MPN method APHA 40.62/40.63:2015 for *Vibrio parahaemolyticus* and *Vibrio vulnificus* in foods

20.3.B.1 Material required for analysis
20.3.B.2 Procedure

20.4 (revised) Presence/absence method ISO 21872-1:2017 for potentially enteropathogenic *Vibrio cholerae* and *Vibrio parahaemolyticus* in foods

20.4.1 Material required for analysis
20.4.2 Procedure

20.5 References

21 *Yersinia enterocolitica*

Revision history

21.1 Introduction

21.1.1 Taxonomy
21.1.2 Epidemiology

21.2 Presence/absence method ISO 10273:2017 for pathogenic *Yersinia enterocolitica* in foods

21.2.1 Material required for analysis
21.2.2 Procedure

21.3 References

22 Bacterial spore count

Revision history

22.1 Introduction

22.1.1 The bacterial spore

22.1.1.1 Sequence of spore formation
22.1.1.2 Spore ultrastructure
22.1.1.3 Mechanisms of spore resistance

22.1.2 Taxonomy of spore-forming bacteria important in foods

22.1.2.1 *Aeribacillus*

22.1.2.2 *Alicyclobacillus*

Alicyclobacillus acidoterrestris
Alicyclobacillus acidocaldarius
Alicyclobacillus acidophilus
Alicyclobacillus contaminans
Alicyclobacillus dauci
Alicyclobacillus fastidiosus
Alicyclobacillus herbarius
Alicyclobacillus pomorum
Alicyclobacillus sacchari

22.1.2.3 *Aneurinibacillus*

Aneurinibacillus thermoautrophilus
22.1.2.4 *Anoxybacillus*
 Anoxybacillus contaminans 338
 Anoxybacillus flavithermus 338
 Anoxybacillus tepidamans 339

22.1.2.5 *Bacillus*
 Bacillus coagulans 339
 Bacillus smithii 340
 Bacillus sporothermodurans 340

22.1.2.6 *Brevibacillus*

22.1.2.7 *Clostridium*
 Clostridium botulinum 341
 Proteolytic clostridia 343
 Saccharolytic clostridia 343
 Psychrophilic and psychrotrophic clostridia that cause the spoilage of refrigerated vacuum-packed meats 344

22.1.2.8 *Cohnella*

22.1.2.9 *Desulfotomaculum*
 Desulfotomaculum nigrificans 345

22.1.2.10 *Fictibacillus*
 Fictibacillus gelatini 345
 Fictibacillus nanhaiensis 346

22.1.2.11 *Geobacillus*
 Geobacillus stearothermophilus 346

22.1.2.12 *Hathewaya*

22.1.2.13 *Jeotgalibacillus*
 Jeotgalibacillus alimentarius 347

22.1.2.14 *Lentibacillus*

22.1.2.15 *Lysinibacillus*

22.1.2.16 *Moorella*

22.1.2.17 *Oceanobacillus*

22.1.2.18 *Paenibacillus*

22.1.2.19 *Paraclostridium*

22.1.2.20 *Sporolactobacillus*

22.1.2.21 *Thermoanaerobacter*

22.1.2.22 *Thermoanaerobacterium*
 T. thermosaccharolyticum 350

22.1.2.23 *Virgibacillus*

22.2 (revised) Methods APHA 25:2015 and 26:2015 for spores of total and flat-sour thermophilic aerobic sporeformers in foods 351
 22.2.1 Material required for analysis 352
 22.2.2 Procedure for the analysis of sugar 352
 22.2.3 Procedure for the analysis of starch 352
 22.2.4 Procedure for the analysis of whole tomatoes, tomato pulp, tomato puree and concentrated milk 353
 22.2.5 Procedure for the analysis of nonfat dry milk 353
 22.2.6 Procedure for the analysis of milk cream 354
 22.2.7 Procedure for the analysis of other foods and ingredients (general) 354

22.3 (revised) Methods APHA 27:2015 for spores of thermophilic anaerobic sporeformers in foods 356
 22.3.1 Material required for analysis 356
22.4 (revised) Methods APHA 28:2015 for spores of sulfide spoilage anaerobic sporeformers in foods
22.4.1 Material required for analysis
22.4.2 Procedure for the analysis of sugar
22.4.3 Procedure for the analysis of starch and flour
22.4.4 Procedure for the analysis of skim milk powder
22.4.5 Procedure for the analysis of soy protein isolates

22.5 (revised) Methods APHA 23:2015 for spores of mesophilic aerobic sporeformers in foods
22.5.1 Material required for analysis
22.5.2 Procedure for foods in general
22.5.3 Procedure for the analysis of milk and dairy products
22.5.4 Procedure for the analysis of water

22.6 (revised) Methods APHA 24:2015 for spores of mesophilic anaerobic sporeformers in foods
22.6.1 Material required for analysis
22.6.2 Procedure for the analysis of sugar
22.6.3 Procedure for the analysis of starch, flours and other cereal products
22.6.4 Procedure for the analysis of dehydrated vegetables
22.6.5 Procedure for the analysis of seasonings and spices
22.6.6 Procedure for the analysis of egg powder, milk powder and other powdered dairy products
22.6.7 Procedure for the analysis of fluid milk and cheeses
22.6.8 Other procedures for mesophilic anaerobic sporeformers

22.7 Methods IFU 12:2007 for Alicyclobacillus in foods
22.7.1 Material required for analysis
22.7.2 Procedure for the analysis of raw material
22.7.3 Procedure for analysis of the finished product
22.7.4 Interpretation and calculation of the results

22.8 References

23 Commercial sterility

23.1 Introduction
23.1.1 Definition of commercial sterility
23.1.2 Classification of commercially sterile foods
23.1.3 Parameters for evaluating the heat resistance of microorganisms
23.1.3.1 Survival curve and decimal reduction time (D value)
23.1.3.2 Number of decimal reductions
23.1.3.3 Thermal destruction curve and temperature coefficient (z value)
23.1.4 D and z values of microorganisms of importance in foods
Vegetative cells
Heat-resistant mold spores
Bacterial spores
Strictly thermophilic aerobic spore-forming bacteria
Strictly thermophilic anaerobic spore-forming bacteria
23.1.5 Dimensioning heat treatments and thermal processing
23.1.5.1 Definition of the intensity of the thermal process
23.1.6 Microbial spoilage of canned foods
23.1.6.1 Underprocessing
23.1.6.2 Post process contamination (leakage)
23.1.6.3 Spoilage by strictly thermophiles
23.1.6.4 Microbial multiplication before heat treatment
23.1.6.5 Non-microbial causes of spoilage
23.1.7 Useful terms

23.2 (revised) Method APHA:2015 for commercial sterility or cause of spoilage of low-acid canned foods
23.2.1 Material required for analysis
23.2.2 Procedure
23.2.3 Interpretation of the results

23.3 (revised) Method APHA:2015 for commercial sterility for cause of spoilage of acid canned foods
23.3.1 Material required for analysis
23.3.2 Procedure
23.3.3 Interpretation of the results

23.4 References

24 Guidelines on preparation of culture media
24.1 Introduction
24.1.1 Ingredients used in the formulation of culture media
24.1.1.1 (revised) Water for preparing media and reagents
24.1.1.2 Nutrient sources for culture media
Peptones
Meat extract, yeast extract and malt extract
Carbohydrates
Minerals and essential metals
24.1.1.3 Selective agents
Antibiotics
Bile and bile salts
Chemical compounds
24.1.1.4 Differential agents
pH indicators
Hydrogen sulfide (H₂S) indicators
Other differential agents
24.1.1.5 Reducing agents
24.1.1.6 Buffering agents
24.1.1.7 Chromogenic and fluorogenic substrates
X-Glucuronide
MUG
ONPG
Salmon-Gal
X-Gal
24.1.1.8 Agar

24.1.2 (revised) Types of culture media

Chemically defined medium
Chemically undefined medium or partially undefined medium
Chromogenic or fluorogenic medium
Liquid medium
Solid and semisolid medium
Transport medium
Preservation medium
Suspension medium (diluents)
Resuscitation medium
Pre-enrichment medium or enrichment medium
Selective enrichment medium
Non-selective enrichment medium
Isolation medium
Selective isolation medium
Non-selective isolation medium
Differential medium
Identification medium
Ready-to-use medium
Medium prepared from commercially dehydrated formulations
Medium prepared from individual components

24.2 Procedure for preparation of culture media

24.2.1 Storing supplies and ingredients for preparation of culture media

24.2.2 Weighing and rehydration

24.2.3 Dissolution and dispersion

24.2.4 Verification and adjustment of the pH before sterilization

24.2.5 Distribution

24.2.6 Sterilization by moist heat

24.2.7 Sterilization by filtration

24.2.8 Verification after sterilization

24.2.9 Preparation of supplements for culture media

24.2.10 Storage of sterilized media until the moment of use

24.2.10.1 Recommendations from ISO 11133:2014

24.2.10.2 (new) Recommendations from Standard Methods for the Examination of Water and Wastewater (Hunt, 2012)

24.2.11 (revised) Preparation of the media at the moment of use

24.3 References

Annex 1. Preparation of media and reagents

Revision history

Acetamide agar/broth
Acetamide broth ISO
Acid phosphatase reagent
AE sporulation medium modified for Clostridium perfringens
Agar Listeria Ottaviani & Agosti (ALOA)
Agar plug (Agar 2%)
Agar plug with thioglycolate
Alcoholic solution of iodine
3:1 alcoholic solution of iodine
Alkaline peptone water (APW)
Alkaline saline peptone water (ASPW)
All purpose Tween (APT) agar/broth
All purpose Tween (APT) agar acidified
All purpose Tween (APT) agar sucrose BCP
All purpose Tween (APT) agar glucose
Ammonium iron (III) sulfate solution
Arginine glucose slants (AGS)
Asparagine broth
Bacillus acidoterrestris (BAT) agar/broth
Baird-Parker (BP) agar
Bile esculin agar
Bile esculin azide agar
Biosynth Chromogenic Medium (BCM®) Listeria monocytogenes (R&F Listeria monocytogenes)
Bismuth sulfite (BS) agar
Blood agar
Bolton Broth
Brain heart infusion (BHI) agar/broth
Brilliant green agar (BGA)
Brilliant green bile (BGB) broth
1% brilliant green solution
Brilliant green sulfa (BGS) agar
Brilliant green water
Bromcresol purple dextrose (BCP) broth
0.04% Bromothymol blue indicator
Buffered Listeria enrichment broth (BLEB)
Buffered peptone water (BPW)
Modifications
Buffered peptone water modified (mBPWp)
Butterfield’s phosphate buffer (PB) (phosphate dilution water) (Butterfield’s phosphate buffered dilution water)
Butterfield’s phosphate buffer with 40% glucose
Carbohydrate fermentation medium
Cefsulodin irgasan novobiocin (CIN) agar
Cellulase solution
Cephalothin sodium fusidate cetrimide (CFC) agar
Christensen urea agar
CHROMagar™ Listeria
CHROMagar™ Vibrio
Citrate azide agar
Chromogenic coliform agar (CCA)
Columbia Blood Agar (CBA) 431
Congo red magnesium oxalate (CR-MOX) agar 432
Cooked meat medium (CMM) 432
Coomassie brilliant blue solution 432
Chromogenic Cronobacter isolation (CCI) agar 433
Cronobacter selective broth (CSB) 433
Decarboxylase broth Falkow 434
Decarboxylation medium 434
Dextrose tryptone agar (DTA), dextrose tryptone broth (DTB) 435
DFI chromogenic agar 435
Dichloran 18% glycerol (DG18) agar 435
Dichloran rose Bengal chloramphenicol (DRBC) agar 436
Diluent with α-amylase 436
Dilution water (see magnesium chloride phosphate buffer, PBMgCl) 436
Dipotassium hydrogen phosphate solution (K₂HPO₄) 436
Dipotassium hydrogen phosphate (K₂HPO₄) solution with antifoam agent 437
Double modified lysine iron agar (DMLIA) 437
E. coli (EC) broth 438
E. coli broth with 4-methylumbelliferyl-β-D-glucuronide (EC-MUG) 438
Elliker agar/broth 438
Enterobacteriaceae enrichment broth (EEB) 439
m-Enterococcus agar (Slanetz & Bartley Medium) 439
Ethanol 70% 439
Fermentation medium for Clostridium perfringens 440
Ferric chloride solution 10% 440
Formalinized physiological saline solution 440
Fraser broth 441
β-Galactosidase reagent (ONPG reagent) (o-nitrophenyl-β-d-galactopyranoside) 441
Glucose agar 442
α-Glucosidase enzymatic assay solution 442
Glycerol salt solution buffered 443
Gram-stain reagents (Hucker) 443
Gum tragacanth and gum arabic mixture 444
Half Fraser broth (demi-Fraser broth) 444
Halotolerance saline peptone water 445
Hektoen enteric (HE) agar 445
Horse blood overlay medium (HL) 446
m-HPC agar 446
Hydrochloric acid solution 446
3% hydrogen peroxide (H₂O₂) 446
Indole Kovacs’s reagent (5% p-dimethylaminobenzaldehyde solution) 447
Indoxyl acetate discs (2.5 to 5.0 mg) 447
Irgasan ticarcillin potassium chlorate (ITC) broth 447
Iron milk medium modified 448
K agar 448
KF Streptococcus agar 449
KF Streptococcus broth 449
Kim-Goepfert (KG) agar 449
King's B medium 450
Koser's citrate broth 450
Lactose broth (LB) 451
Lactose broth supplemented with anionic Tergitol 7 or Triton X-100 451
Lactose broth supplemented with cellulase solution 451
Lactose broth supplemented with papain solution 451
Lactose gelatin medium 451
Lactose sulfate (LS) medium (LS) 452
Lauryl sulfate tryptose (LST) broth 452
Levine's eosin-methylene blue (L-EMB) agar 453
Liver broth 453
Liver veal agar (LVA) 454
Lysine iron agar (LIA) 454
MacConkey (MAC) agar 454
MacFarland standards 455
Magnesium chloride phosphate (PBMgCl) buffer 455
Malonate broth 455
Malt acetic agar (MAA) 456
Malt extract agar (MEA) with antibiotics 456
Malt extract broth (MEB) 457
Malt extract yeast extract 40% glucose (MY40G) 457
Mannitol egg yolk polymyxin (MYP) agar 457
de Man Rogosa & Sharpe (MRS) agar/broth 458
m-Enterococcus agar (Slanetz & Bartley Medium) 458
Methyl red solution 459
Modified cellobiose polymyxin colistin (mCPC) agar 459
Modified charcoal cefoperazone deoxycholate (mCCDA) agar 460
Modified Oxford (MOX) agar 460
Modified semisolid Rappaport-Vassiliadis (MSRV) agar 461
Modified University of Vermont (UVM) broth 462
Morpholinepropanesulfonic acid-buffered Listeria enrichment broth (MOPS-BLEB) 463
Motility medium for Bacillus cereus 463
Motility nitrate medium 463
Motility test medium 464
Motility test medium ISO 464
MR-VP broth 465
Muller-Kauffmann tetraphionate novobiocin (MKTTn) broth 465
Nessler reagent 466
Ninhydrin solution (3.5% mass/volume) 466
Nitrate broth 466
Nitrate test reagents 467
Nitrate test reagents ISO 7937:2004 467
Nutrient agar (NA), nutrient broth (NB) 468
Nutrient agar with manganese (NAMn) 468
Nutrient agar with trypan blue 468
Nutrient broth with lysozyme 468
NWRI agar (HPCA) 468
Orange serum agar (OSA), orange serum broth (OSB) 468
Oxford agar (OXA) 469
Oxidase Kovac's reagent (1% N,N,N,N-tetramethyl-p-phenilenediamine dihydrochloride aqueous solution) 470
Oxidation fermentation (OF) glucose agar 470
Oxoid Chromogenic *Listeria* Agar (OCLA) 470
Papain solution 5% 471
PE-2 medium 471
Penicillin pimaricin agar (PPA) 471
Peptone sorbitol bile (PSB) broth 472
Peptone water (PW) 472
Phenol red carbohydrate broth 472
Phenylalanine (tryptophane) deaminase agar 473
Phosphate buffered saline (PBS) 473
Phosphate buffered solution according to ISO 6887-4:2017 474
Phosphate buffered solution according to ISO 6887-5:2010 474
Phosphate saline buffer 0.02M (pH 7.3 to 7.4) 474
Plate count agar (PCA) standard methods agar (SMA), (tryptone glucose yeast extract agar) 475
Plate count agar (PCA) supplemented with 0.1% soluble starch 475
Plate count agar (PCA) with chloramphenicol (100 mg/L) 475
Potassium cyanide broth (KCN) 475
0.5% Potassium hydroxide saline solution 476
Potato dextrose agar (PDA) acidified 476
Potato dextrose agar (PDA) with antibiotics 477
Preservative-resistant yeast (PRY) medium 477
Preston broth 478
Pseudomonas CN agar 478
Purple agar/broth for carbohydrate fermentation 479
Pyrazinamidase agar 479
R2A agar 480
Rapid'L mono agar 480
Rappaport-Vassiliadis (R-10) broth 481
Rappaport-Vassiliadis (RV) medium 481
Rappaport-Vassiliadis soya (RVS) broth 482
Reconstituted nonfat dry milk 483
Reinforced clostridial medium (RCM) 483
Reinforced clostridial medium (RCM) with lactate 484
R&F *Cronobacter* Chromogenic Agar 484
R&F *Listeria monocytogenes* (see Biosynth Chromogenic Medium (BCM*) *Listeria monocytogenes*) 484
Ringer's solution quarter strength 484
Rogosa SL agar/broth 485
Saline decarboxylase broth 485
Saline nutrient agar (SNA) 486
Saline peptone water (SPW) (peptone salt solution) 486
Saline tryptophan broth 486
Selenite cystine (SC) broth 487
Sheep blood agar 488
Simmons citrate agar 488
Sodium citrate solution (Na$_3$C$_6$H$_5$O$_7$·2H$_2$O) 489
0.5% Sodium deoxycholate solution 489
Sodium dodecyl sulfate polymixin sucrose (SDS) agar 489
Sodium hippurate solution 490
Sodium hydroxide solutions 490
Sodium tripolyphosphate solution 490
Spore stain reagents (Ashby's) 490
XXVI Table of contents

Sudan black B solution 0.3% in ethanol 70% 491
Sulfide indole motility (SIM) medium 491
Sulfite agar 491
TtNiagarandT,N, broth 492
T,N0andT,N3 broth 492
Tetrathionate (TT) broth 492
Tetrathionate broth Hajna and Damon (1956) (TTH) 493
Thermoacidurans agar (TAA) and thermoacidurans broth (TAB) 494
Thioglycollate medium (TGM) fluid 494
Thiosulfate citrate bile sucrose (TCBS) agar 494
Toluidine blue DNA agar 495
Triphenyltetrazolium chloride soya tryptone (TSAT) agar 495
Triple sugar iron (TSI) agar 496
Trypticase soy agar/broth (TSA/TSB) 496
Trypticase soy agar/broth with 0.6% yeast extract (TSA-YE or TSB-YE) 497
Trypticase soy broth (TSB) with 10% NaCl and 1% sodium pyruvate 497
Trypticase soy broth (TSB) with 20% NaCl 497
Trypticase soy broth (TSB) with polymyxin 497
Trypticase soy broth (TSB) with 0.5% potassium sulfite (K2SO3) 497
Trypticase soy broth (TSB) with 35 mg/L ferrous sulfate 497
Trypticase soy agar (TSA) with 5% sheep blood 497
Tryptone glucose extract (TGE) agar 497
Tryptone glucose yeast extract acetic (TGYA) agar 498
Tryptone glucose yeast extract acetic broth (TGYAB) 498
Tryptone (tryptophan) broth 498
Tryptose sulfite cycloserine (TSC) agar 499
Tween esterase test medium 500
Tyrosine agar 500
Universal pre-enrichment broth 500
Urea agar (Christensen) 501
Urea broth 501
Urea broth rapid 502
Vaspar 502
Violet red bile (VRB) agar 502
Violet red bile glucose (VRBG) agar 502
Voges-Proskauer (VP) broth modified for Bacillus 503
Voges-Proskauer (VP) test reagents (5% α-naphthol alcoholic solution, 40% potassium hydroxide aqueous solution) 503
Xylose lysine deoxycholate agar (XLD) 504
Xylose lysine Tergitol 4 (XLT4) agar 504
Yeast extract starch glucose (YSG) agar/broth 504

Annex 2. Sampling plans and microbiological limits recommended by ICMSF for foods 507

Index 515