Thomas Wick

Multiphysics Phase-Field Fracture

Modeling, Adaptive Discretizations, and Solvers

DE GRIYTER
Contents

Preface and personal acknowledgments — VII

Classes and schools related to this monograph — XI

Research funding acknowledgments — XIII

Own related work — XV

1 Introduction — 1
 1.1 Multiphysics — 1
 1.2 Variational phase-field fracture — 2
 1.3 Interfaces — 4
 1.3.1 Fixed interfaces — 5
 1.3.2 Moving interfaces — 5
 1.3.3 Propagating interfaces — 6
 1.3.4 Realizing interface coupling — 6
 1.4 Engineering problem: fracture and damage in screws — 8
 1.5 State-of-the-art literature overview — 8
 1.6 Outline of this book — 10

2 Notation, prerequisites, and prototype model problems — 15
 2.1 Notation — 15
 2.1.1 Spatial domains, boundaries, fracture — 15
 2.1.2 Time/loading intervals — 16
 2.1.3 Model, material, and discretization parameters — 16
 2.1.4 Solution variables — 17
 2.1.5 Gradient, divergence, trace, Laplace — 17
 2.1.6 Function spaces — 18
 2.1.7 Notation for inner products, bilinear forms, semilinear forms — 21
 2.1.8 Notational conventions for scalars, vectors, tensors — 22
 2.1.9 Tables of variables, parameters, and constitutive quantities — 22
 2.2 Prerequisites in differentiation and integration — 22
 2.2.1 Gauss–Green theorem/divergence theorem — 23
 2.2.2 Integration by parts and Green’s formula — 25
 2.2.3 Change of variables in Lebesgue integrals — 25
 2.2.4 Differentiation in Banach spaces — 26
 2.2.5 Chain rules — 28
 2.3 A prototype phase-field formulation — 29
2.4 Comments on the prototype phase-field problem — 32
2.4.1 Relation to the obstacle problem — 32
2.4.2 Brief comments on the classification — 32
2.4.3 Energy formulations — 33
2.5 A simplified phase-field model for dynamic fracture — 34

3 Classifications of partial differential equations and variational inequalities — 35
3.1 Linear versus nonlinear PDEs — 35
3.1.1 General definition of a differential equation — 35
3.1.2 Classifications into linear and nonlinear PDEs — 36
3.1.3 Examples — 37
3.2 Variational equations versus variational inequalities — 37
3.2.1 Variational inequalities — 37
3.2.2 Minimization of functionals — 39
3.3 Coupled problems and multiphysics PDEs — 40
3.3.1 Domain coupling — 43
3.3.2 Interface coupling — 44
3.3.3 Coupling strategies — 45
3.4 Domain- and interface-coupling: Biot's equations coupled to elasticity — 50
3.4.1 Notation and equations — 50
3.4.2 Governing equations — 51
3.4.3 Examples of typical setups — 53
3.4.4 Variational-monolithic formulation — 53
3.4.5 Discretization, implementation, results — 54
3.5 Classification of the prototype quasi-static model problem — 55
3.6 Classification of the prototype dynamic model problem — 56

4 Modeling of variational phase-field fractures — 59
4.1 Ingredients from continuum mechanics and some constitutive laws — 59
4.2 Modeling brittle fracture in a nutshell — 61
4.3 Griffith’s model — 62
4.4 Francfort and Marigo’s variational model for brittle fracture — 63
4.4.1 Surface and bulk energies — 63
4.4.2 Evolution laws — 64
4.4.3 Specific forms of the total energy and Euler-Lagrange systems — 65
4.4.4 A weak formulation of quasi-static brittle phase-field fracture — 73
4.5 Thermodynamical extensions and interpretations — 73
4.5.1 Energy splitting for fracture under tension and compression — 73
4.5.2 A weak phase-field fracture formulation using stress splitting — 76
7.2 Linearizations via decoupling, time-lagging, or extrapolation — 132
7.3 Fixed-point iterations — 133
7.4 Functional iteration — 134
7.4.1 Abstract procedure — 135
7.4.2 Example — 135
7.5 Iterative coupling for solving PDE systems — 136
7.6 Iterative coupling for phase-field fracture — 136
7.6.1 A partitioned scheme with updating stabilizing parameters: L-scheme — 137
7.7 Monolithic schemes — 139
7.7.1 Challenges in phase-field fracture — 139
7.7.2 Quasi-monolithic schemes — 140
7.7.3 An iteration on the extrapolation — 142
7.8 Newton's method: overview. Going from \(\mathbb{R} \) to Banach spaces — 143
7.8.1 Monotonicity tests — 144
7.8.2 A basic algorithm for a residual-based Newton method — 144
7.8.3 Inexact Newton — 145
7.8.4 Abstract schemes for monolithic formulations and their numerical solution — 145
7.9 Newton-type methods applied to variational phase-field fracture — 148
7.9.1 A residual-based Newton algorithm — 148
7.9.2 An error-oriented Newton method — 152
7.9.3 A modified Newton method with Jacobian modification — 155
7.9.4 An error-oriented Newton method with Jacobian modification — 158
7.9.5 A combined Newton algorithm and using a primal-dual active set strategy — 159
7.10 Linear solution inside Newton's method of monolithic phase-field fracture systems — 161
7.10.1 Fully monolithic approximation — 162
7.10.2 A block-diagonal preconditioner for the extrapolated scheme — 163
7.10.3 A matrix-free geometric multigrid solver — 164
7.10.4 Parallel solution on uniform and adaptively refined meshes — 164
7.11 The augmented Lagrangian loop and an inexact version — 165
7.11.1 Augmented Lagrangian penalization — 166
7.11.2 An adaptive Newton stopping criterion for an inexact augmented Lagrangian method — 166
7.12 Comparing primal-dual active set and augmented Lagrangian in Newton-type algorithms — 167
7.13 Updating the strain history field — 168

8 Simulations II: single edge notched shear test — 169
8.1 Governing frameworks — 169
8.2 Goals and test cases — 169
8.3 Results elsewhere in this monograph — 169
8.4 Configuration — 170
8.5 Boundary conditions — 171
8.6 Initial conditions — 172
8.7 Parameters — 172
8.8 Quantities of interest — 172
8.9 Discussion of our findings — 173
8.9.1 General comparisons — 173
8.9.2 Stabilized \(L \)-scheme with updating parameters — 175
8.9.3 Loading step refinement — 175

9 Numerical modeling part III: adaptive concepts — 177
9.1 General motivation of adaptivity — 177
9.1.1 Specific comments to spatial and temporal adaptivity for phase-field fracture — 178
9.1.2 Further comments and recent developments — 178
9.1.3 Efficiency, reliability, basic adaptive algorithm — 179
9.1.4 Measuring the quality of the error estimator \(\eta \) — 180
9.2 Goal-oriented a posteriori error estimation for steady-state phase-field fracture — 181
9.2.1 Problem statements and setups — 181
9.2.2 Brief recapitulation of the DWR method for nonlinear problems — 182
9.2.3 Localization of the error estimator — 185
9.2.4 Finite element approximations and comments on adjoint-based error estimation — 187
9.2.5 A PU-DWR a posteriori error estimator for quasi-static phase-field fracture — 188
9.2.6 Mesh refinement and marking strategies — 190
9.3 Comments on a posteriori error estimation in numerical simulations — 193
9.3.1 Example: Stationary Navier–Stokes 2D-1 benchmark — 194
9.4 Multigoal-oriented a posteriori error estimation — 199
9.4.1 Examples of multiple goal functionals — 199
9.4.2 Constructing a combined goal functional — 201
9.4.3 A multigoal-oriented a posteriori error estimate for steady-state phase-field fracture — 204
9.4.4 Adaptive algorithm for multigoal-oriented discretization error estimation — 205
9.4.5 Adaptive algorithm for balancing discretization and nonlinear iteration errors — 206
9.4.6 Algorithm for multigoal-oriented error estimation — 207
9.5 Predictor-corrector adaptivity — 207
9.5.1 Local mesh refinement around growing fractures — 207
9.5.2 An adaptive nonintrusive global-local procedure — 209
9.6 Adaptive time step control – a heuristic estimator — 211

10 Simulations III: goal-oriented error control for a phase-field slit and time control for a screw — 215
10.1 A PU-DWR method for a slit modeled by phase-field — 215
10.1.1 Configuration, boundary conditions, initial condition, and parameters — 215
10.1.2 Goal functionals and reference values — 215
10.1.3 Goal-oriented a posteriori error estimator — 216
10.1.4 Example 1a/b: upper half domain goal functional — 216
10.1.5 Example 2a/b: point value as goal functional — 218
10.2 Multigoal-oriented error estimation for the slit without phase-field — 219
10.2.1 Problem statement and configuration — 220
10.2.2 Quantities of interest — 220
10.2.3 Single goal functional — 221
10.2.4 Multigoal-oriented error estimation — 221
10.3 Screw tests: error control in time/loading — 222
10.3.1 Formulation — 222
10.3.2 Configuration — 223
10.3.3 Boundary conditions — 224
10.3.4 Initial condition — 224
10.3.5 Parameters — 224
10.3.6 Quantity of interest — 225

11 Multiphysics extensions involving fracture — 227
11.1 Interface definition and interface conditions — 227
11.2 Interpreting phase-field as level-set for capturing the interface — 227
11.2.1 Constructing and working with indicator functions using φ — 228
11.2.2 Constructing a level-set function — 229
11.2.3 Example — 230
11.3 Crack width computations and total crack volume — 230
11.4 Pressurized and nonisothermal phase-field fractures — 233
11.4.1 Pressurized fractures in elasticity — 233
11.4.2 Nonisothermal fractures — 240
11.4.3 A goal-oriented error estimator — 245
11.5 A pressure diffraction equation in porous media — 246
11.6 A brief introduction to continuum mechanics — 248
11.6.1 Transformations and deformations — 250
11.6.2 Identification of Eulerian and Lagrangian coordinates — 254
11.6.3 Transformation of derivatives — 254
11.6.4 Nanson’s formula and the Piola transformation — 256
11.6.5 Reynolds transport theorem and conservation of momentum — 257
11.6.6 Conservation of momentum — 259
11.6.7 Constitutive laws — 261
11.7 Fractures inside large solid deformations — 261
11.7.1 Lagrangian perspective for dynamic fracture — 261
11.7.2 Lagrangian perspective for pressurized dynamic fractures — 262
11.7.3 Fixed-mesh fully Eulerian framework — 263
11.8 Coupling fluid-structure interaction with phase-field fracture — 265
11.8.1 An arbitrary Lagrangian–Eulerian framework — 265
11.8.2 A fixed-mesh fully Eulerian model — 273
11.8.3 Fluid-structure interaction with fracture Navier–Stokes flow — 276
11.8.4 Illustrating comparisons of ALE with fixed-mesh fully Eulerian — 279
11.9 Specific challenges in multiphysics phase-field fracture — 279
11.9.1 A good practice example from Frei/Richter/Wick — 281

12 Simulations IV — 283
12.1 Quasi-static pressurized fractures — 283
12.1.1 Sneddon’s test — 283
12.1.2 Mixed boundary conditions — 286
12.2 Nonisothermal phase-field fracture — 288
12.2.1 Example 1: Sneddon’s 2d setting with pressure — 289
12.2.2 Example 2: Sneddon’s 2d setting with pressure and constant temperature — 290
12.2.3 Example 3: Setting with pressure, temperature, and decline constant — 290
12.3 A propagating fracture in a porous medium — 290
12.3.1 Outline of the main concepts — 290
12.3.2 Discussions of our findings — 291
12.4 Fractured solid coupled with Navier–Stokes flow — 291
12.4.1 Example 1: Constant flow — 292
12.4.2 Example 2: Sinus-inflow — 293

13 Research software development — 295
13.1 Current developments in my group — 297

14 Conclusions and future interest — 299
14.1 Open problems — 300

15 The end — 301
XXIV Contents

Bibliography — 303

Index — 327