MULTIPHYSICS SIMULATION BY DESIGN FOR ELECTRICAL MACHINES, POWER ELECTRONICS, AND DRIVES

MARIUS ROSU
PING ZHOU
DINGSHENG LIN
DAN IONEL
MIRCEA POPESCU
FREDE BLAABJERG
VANDANA RALLABANDI
DAVID STATON
CONTENTS

PREFACE vii

ACKNOWLEDGMENTS xv

CHAPTER 1 BASICS OF ELECTRICAL MACHINES DESIGN AND MANUFACTURING TOLERANCES 1
Marius Rosu, Mircea Popescu, and Dan M. Ionel

1.1 Introduction 1
1.2 Generic Design Flow 3
1.3 Basic Design and How to Start 4
1.4 Efficiency Map 16
1.5 Thermal Constraints 19
1.6 Robust Design and Manufacturing Tolerances 22
References 42

CHAPTER 2 FEM-BASED ANALYSIS TECHNIQUES FOR ELECTRICAL MACHINE DESIGN 45
Ping Zhou and Dingsheng Lin

2.1 T–Ω Formulation 45
2.2 Field-Circuit Coupling 56
2.3 Fast AC Steady-State Algorithm 70
2.4 High Performance Computing—Time Domain Decomposition 82
2.5 Reduced Order Modeling 93
References 106

CHAPTER 3 MAGNETIC MATERIAL MODELING 109
Dingsheng Lin and Ping Zhou

3.1 Shape Preserving Interpolation of B–H Curves 109
3.2 Nonlinear Anisotropic Model 115
3.3 Dynamic Core Loss Analysis 125
3.4 Vector Hysteresis Model 137
3.5 Demagnetization of Permanent Magnets 150
References 162

CHAPTER 4 THERMAL PROBLEMS IN ELECTRICAL MACHINES 165
Mircea Popescu and David Staton

4.1 Introduction 165
4.2 Heat Extraction Through Conduction 167
4.3 Heat Extraction Through Convection 170
4.4 Heat Extraction Through Radiation 186
4.5 Cooling Systems Summary 188
4.6 Thermal Network Based on Lumped Parameters 188
4.7 Analytical Thermal Network Analysis 192
4.8 Thermal Analysis Using Finite Element Method 193
4.9 Thermal Analysis Using Computational Fluid Dynamics 195
4.10 Thermal Parameters Determination 200
4.11 Losses in Brushless Permanent Magnet Machines 202
4.12 Cooling Systems 210
4.13 Cooling Examples 214
References 218

CHAPTER 5 AUTOMATED OPTIMIZATION FOR ELECTRIC MACHINES 223
Dan M. Ionel and Vandana Rallabandi

5.1 Introduction 223
5.2 Formulating an Optimization Problem 224
5.3 Optimization Methods 226
5.4 Design of Experiments and Response Surface Methods 228
5.5 Differential Evolution 233
5.6 First Example: Optimization of an Ultra High Torque Density PM Motor for Formula E Racing Cars: Selection of Best Compromise Designs 234
5.7 Second Example: Single Objective Optimization of a Range of Permanent Magnet Synchronous Machine (PMSMS) Rated Between 1 kW and 1 MW Derivation of Design Proportions and Recommendations 238
5.8 Third Example: Two- and Three-Objective Function Optimization of a Synchronous Reluctance (SYNREL) and PM Assisted Synchronous Reluctance Motor 241
5.9 Fourth Example: Multi-Objective Optimization of PM Machines Combining DOE and DE Methods 245
5.10 Summary 248
References 248

CHAPTER 6 POWER ELECTRONICS AND DRIVE SYSTEMS 251
Frede Blaabjerg, Francesco Iannuzzo, and Lorenzo Ceccarelli

6.1 Introduction 251
6.2 Power Electronic Devices 253
6.3 Circuit-Level Simulation of Drive Systems 264
6.4 Multiphysics Design Challenges 274
References 281

INDEX 283